Article contents
Amphiphilic fluorescent copolymers via one-pot synthesis of RAFT polymerization and multicomponent Biginelli reaction and their cells imaging applications
Published online by Cambridge University Press: 11 June 2019
Abstract
In this contribution, we devoted ourselves to fabricating aggregation-induced emission (AIE) activity copolymers via one-pot combination of RAFT polymerization and Biginelli reaction for the first time. When the feeding ratio of TPB was 33.5%, the molar fraction of TPB was, respectively, about 14.2 and 22.5% in PEG-PTE1 copolymers by two-step strategy and PEG-PTE2 copolymers by one-pot strategy with the similar structure. The Mn of PEG-PTE1 increased to 59,300 from 52,800 of PEG-AE presoma with narrow PDI, which was more than Mn of PEG-PTE2 with 52,300. As compared with PEG-PTE2, when the feeding ratio of TPB was 48.6%, the molar fraction of TPB increased to 32.6% in PEG-PTE3. In aqueous solution, the as-obtained PEG-PTE2 copolymers can self-assemble into fluorescent organic nanoparticles (FONs) with 100–180 nm spherical morphology, the maximal emission peak of which presented at 460 nm with the obvious AIE phenomenon. Moreover, due to the low toxicity and excellent cell dyeing behavior, the as-prepared PEG-PTE2 copolymers displayed great potential for biomedical applications.
- Type
- Article
- Information
- Journal of Materials Research , Volume 34 , Issue 17: Focus Issue: Building Advanced Materials via Particle Aggregation and Molecular Self-Assembly , 16 September 2019 , pp. 3011 - 3019
- Copyright
- Copyright © Materials Research Society 2019
References
- 11
- Cited by