Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:19:40.610Z Has data issue: false hasContentIssue false

An investigation of photoassisted diffusion of oxygen in solid C60 films using resonant alpha-scattering

Published online by Cambridge University Press:  03 March 2011

Corinne C. Eloi
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, and Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511
David J. Robertson*
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, and Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511
A.M. Rao
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
Ping Zhou
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
K-A. Wang
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
Peter C. Eklund
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The interaction of molecular oxygen with thin C60 films was investigated using the 3.04 MeV resonance in the 16O(α, α)16O elastic scattering reaction to measure the concentration profile of oxygen in the fullerene films. A thin (d ≍ 20 nm) layer containing oxygen was observed on the surface of C60 films (d ≍ 200 nm) exposed to ∼1 atm of O2 for 1 h in the absence of light. In contrast, oxygen was uniformly distributed throughout the entire film when samples were irradiated for 1 h with either a 488 nm Ar ion laser or Xe lamp in the presence of ∼1 atm of O2. This O2 uptake was found to be both power dependent and reversible.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Taylor, R., Parsons, J. P., Avent, A. G., Rannard, S. P., Dennis, T. J., Hare, J. P., Kroto, H. W., and Walton, D. R. M., Nature 351, 277 (1991).CrossRefGoogle Scholar
2Kroll, G. H., Benning, P. J., Chen, Y., Ohno, T. R., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Chem. Phys. Lett. 181, 112 (1991).Google Scholar
3Vassallo, A. M., Pang, L. S. K, Cole-Clarke, P. A., and Wilson, M. A., J. Am. Chem. Soc. 113, 7820 (1991).CrossRefGoogle Scholar
4Assink, R. A., Schirber, J. E., Loy, D. A., Morosin, B., and Carlson, G. A., J. Mater. Res. 7, 2136 (1992).CrossRefGoogle Scholar
5Nissen, M. K., Wilson, S. M., and Thewalt, M. L. W., Phys. Rev. Lett. 69, 2423 (1992).CrossRefGoogle Scholar
6Rao, A. M., Wang, K-A., Holden, J. M., Wang, Y., Zhou, P., Eklund, P. C., Eloi, C. C., and Robertson, J. D., J. Mater. Res. 8, 2277 (1993).CrossRefGoogle Scholar
7Zhou, P., Rao, A. M., Wang, K-A., Robertson, J. D., Eloi, C., Meier, M. S., Ren, S. L., Bi, X-X., Eklund, P. C., and Dresselhaus, M. S., Appl. Phys. Lett. 60, 2871 (1992).Google Scholar
8Duclos, S. J., Haddon, R. C., Glarum, S. H., Hebard, A. F., and Lyons, K. B., Solid State Commun. 80, 481 (1991).CrossRefGoogle Scholar
9Haufler, R. E., Conceicao, J., Chibante, L. P. F, Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curn, R. F., and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).CrossRefGoogle Scholar
10Meier, M. S. and Selegue, J. P., J. Org. Chem. 57, 1924 (1992).CrossRefGoogle Scholar
11Wang, Z. L., Westendorp, J. F. M, and Saris, F. W., Nucl. Instrum. Methods 211, 193 (1983).CrossRefGoogle Scholar
12Hnatowicz, V., Macholdt, H., and Richter, F-W., Nucl. Instrum. Methods B 62, 247 (1991).Google Scholar
13Cohen, D. D. and Rose, E. K., Nucl. Instrum. Methods B 66, 158 (1992).CrossRefGoogle Scholar
14Leavitt, J. A., Mclntyre, L. C. Jr., Ashbaugh, M. D., Oder, J. G., Lin, Z., and Dezfouly-Arjomandy, B., Nucl. Instrum. Methods B 44, 260 (1990).CrossRefGoogle Scholar
15Deconninck, G., Introduction to Radioanalytical Physics (Elsevier Publishing Company, Amsterdam, 1978), p. 134.Google Scholar
16Ziegler, J. F., Helium Stopping Powers and Ranges in All Elements (Pergamon Press, New York, 1977), Vol. 4, p. 46.Google Scholar
17Rao, A. M., Zhou, P., Wang, K-A., Hager, G. T., Holden, J. M., Wang, Y., Lee, W-T., Bi, X-X., Eklund, P. C., Cornett, D. S., Duncan, M. A., and Amster, I. J., Science 259, 955 (1993).CrossRefGoogle Scholar