Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T13:03:09.501Z Has data issue: false hasContentIssue false

Atomic force microscopy study of small-size nanotubular polymer thin films

Published online by Cambridge University Press:  31 January 2011

C. F. Zhu
Affiliation:
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
I. Lee
Affiliation:
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
J. W. Li
Affiliation:
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
C. Wang
Affiliation:
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
X. Y. Cao
Affiliation:
Polymer Chemistry Laboratory, Chinese Academy of Science and China Petro-chemical Corporation, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
H. Xu
Affiliation:
Polymer Chemistry Laboratory, Chinese Academy of Science and China Petro-chemical Corporation, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
R. B. Zhang
Affiliation:
Polymer Chemistry Laboratory, Chinese Academy of Science and China Petro-chemical Corporation, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
Get access

Abstract

In this paper, we report atomic force microscopy (AFM) images of a tubular polymer and its supermolecular polymer thin films, operated in contact mode at room temperature in air. The configuration models are also calculated using molecular dynamics. The diameter of the polymer nanotube is about 0.7 nm, the smallest size a tube can have. The results of calculation agree with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brus, L.E., Rosetti, R., and Nakahara, S., J. Chem. Phys. 79, 1086 (1983).CrossRefGoogle Scholar
2.Johuson, B. L. and Kirczenow, G., Phys. Rev. Lett. 69 (4), 672 (1992).CrossRefGoogle Scholar
3.Kroto, H.W., Heath, J.K., Obrien, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
4.Ebbesen, T.W. and Ajayan, P.M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
5.Harada, A., Li, J., and Kamachi, M., Nature (London) 356 (26), 325 (1992).CrossRefGoogle Scholar
6.Harada, A., Li, J., and Kamachi, M., Nature (London) 364 (5), 516 (1993).CrossRefGoogle Scholar
7.Harada, A., Li, J., and Kamachi, M., Macromol. 27, 4538 (1994).CrossRefGoogle Scholar
8.Harada, A., Li, J., Sukuki, S., and Kamachi, M., Macromol. 26, 5267 (1993).CrossRefGoogle Scholar
9.Pregel, M.L., Jullien, L., and Lehn, J-M., Angew. Chem., Int. Ed. Engl. 31, 1637 (1992).CrossRefGoogle Scholar
10.Tanev, P.T. and Pimravaia, T. J., Chem. Mater. 8, 2068 (1996).CrossRefGoogle Scholar
11.Brinker, C.J., Chem. Mater. 8, 1682 (1996).Google Scholar
12.Abrahams, B.F., Hoskins, B.F., Michail, D.M., and Bson, R. R., Nature (London) 369 (30), 727 (1994).CrossRefGoogle Scholar
13.Feher, F.J. and Newwan, D.A., J. Am. Chem. Soc. 112, 19311936 (1990).CrossRefGoogle Scholar
14.Murugavel, R. and Roesky, H.W., Acc. Chem. Res. 29, 183189 (1996).CrossRefGoogle Scholar
15.Macura, S. and Ernst, R. R., Mol. Phys. 41, 95 (1980).CrossRefGoogle Scholar
16.Bother-By, A. A., Stephens, R. L., Lee, Jumee, Warren, C. D., and Jeanloz, R. W., J. Am. Chem. Soc. 106, 811 (1984).CrossRefGoogle Scholar
17.Freemantle, M., C & EN. 15, 62 (1996).Google Scholar
18.Wang, Z.L. and Kang, Z. C., Philos. Mag. B 74 (1), 5169 (1996).CrossRefGoogle Scholar
19.Bai, C. L., Zhu, C. F., Wang, X. W., Zhang, P. C., Li, Q., Wang, C., Zhao, B. R., Zheng, L. Z., and Li, L., Thin Solid Films 289, 7073 (1996).CrossRefGoogle Scholar
20.Bai, C., Zhu, C. F., Zhang, P. C., Yu, T., and Wang, F. S., J. Vac. Sci. Technol. B 12 (3), 321 (1994).Google Scholar
21.Xu, H., Cao, X. Y., Li, Z., Cao, M., Dai, D. R., Xie, P., and Zhang, R. B., Chinese J. Polym. Sci. (1998, in press).Google Scholar
22.Cao, X. Y., Xu, H., Wang, L. T., Li, Z., Cao, M., Xie, P., and Zhang, R. B., Chinese J. Polym. Sci. (1998, in press).Google Scholar
23.Bai, C., Zhu, C. F., Huang, G. Z., Yang, J., and Wan, M. X., Ultramicroscopy 42–44, 10791082 (1997).Google Scholar