Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T09:48:14.568Z Has data issue: false hasContentIssue false

Atomistic Structure of Sodium and Calcium Silicate Intergranular Films in Alumina

Published online by Cambridge University Press:  31 January 2011

David A. Litton
Affiliation:
Department of Ceramic and Materials Engineering, Interfacial Molecular Science Lab, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08854
Stephen H. Garofalini
Affiliation:
Department of Ceramic and Materials Engineering, Interfacial Molecular Science Lab, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08854
Get access

Abstract

Sodium silicate intergranular films (IGF) in contact with the [0001] basal plane of α-alumina were studied using the molecular dynamics computer simulation technique. The results were compared to previous simulations of calcium silicate and sol-gel silica IGF's in contact with alumina. An ordered, cagelike structure was observed at the interface. Sodium ions segregated to the cages at the interfaces. Calcium and hydrogen ions were also observed to segregate to the cages in the previous simulations. The modifier ions were surrounded by more oxygen ions in the cages at the interface than in the bulk of the IGF. This explains the segregation of modifiers at the interface. Interface energy decreased as the sodium content of the IGF increased. Interface energy decreased faster as a function of Na2O content than as a function of CaO content. However, interface energy decreased slower as a function of Na+ content than as a function of Ca2+content.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gitzen, W.H., Alumina as a Ceramic Material (American Ceramic Society, Westerville, OH, 1970), p. 263.Google Scholar
2.Dorre, E. and Hubner, H., Alumina: Processing, Properties, and Applications (Springer, Berlin, 1984).CrossRefGoogle Scholar
3.Bennison, S. J. and Harmer, M. P., Sintering of Advanced Ceramics, edited by Handwerker, C. A., Blendell, J. E., and Kaysser, W. A., (American Ceramic Society, Westerville, OH, 1990), pp. 1349.Google Scholar
4.Bae, S. I. and Baik, S., J. Mater. Sci. 28 (15), 41974204 (1993).CrossRefGoogle Scholar
5.Bae, S. I. and Baik, S., J. Am. Ceram. Soc. 76 (4), 10651067 (1993).CrossRefGoogle Scholar
6.Bae, S. I., J. Am. Ceram. Soc. 77 (10), 24992504 (1994).CrossRefGoogle Scholar
7.Bateman, C. A., Bennison, S. J., and Harmer, M. P., J. Am. Ceram. Soc. 72 (7), 12411244 (1989).CrossRefGoogle Scholar
8.Bennison, S. J. and Harmer, M.P., J. Am. Ceram. Soc. 66 (5), C90–C-92 (1983).CrossRefGoogle Scholar
9.Bennison, S. J. and Harmer, M.P., J. Am. Ceram. Soc. 68 (1), C22–C-24 (1985).Google Scholar
10.Berry, K. A. and Harmer, M. P., J. Am. Ceram. Soc. 69 (2), 143149 (1986).CrossRefGoogle Scholar
11.Echeberria, J., Castro, F., and Riley, F. L., Mater. Sci. Forum 113/115, 579584 (1993).CrossRefGoogle Scholar
12.Handwerker, C. A., Morris, P. A., and Coble, R. L., J. Am. Ceram. Soc. 72 (1), 130136 (1989).CrossRefGoogle Scholar
13.Hansen, S.C. and Phillips, D. S., Philos. Mag. A 47 (2), 209234 (1983).CrossRefGoogle Scholar
14.Horn, D.S. and Messing, G.L., Mater. Sci. Eng. A, Structural 195, 169178 (1995).CrossRefGoogle Scholar
15.Kaysser, W.A., Sprissler, M., Handwerker, C. A., and Blendell, J. E., J. Am. Ceram. Soc. 70 (5), 339343 (1987).CrossRefGoogle Scholar
16.Kim, S.S., Moon, J.H., and Baik, S., Solid State Phenom. 25/26, 269 (1992).CrossRefGoogle Scholar
17.Kim, D-Y., Wiederhorn, S.M., and Hockey, B., J. Am. Ceram. Soc. 77 (2), 444 (1994).CrossRefGoogle Scholar
18.Morrissey, K.J. and Carter, C. B., J. Am. Ceram. Soc. 67 (4), 292301 (1984).CrossRefGoogle Scholar
19.Powell-Dogan, C.A. and Heuer, A.H., J. Am. Ceram. Soc. 73 (12), 36703676 (1990).CrossRefGoogle Scholar
20.Rodel, J. and Glaeser, A. M., J. Am. Ceram. Soc. 73 (11), 32923301 (1990).CrossRefGoogle Scholar
21.Simpson, Y.K. and Carter, C. B., J. Am. Ceram. Soc. 73 (8), 23912398 (1990).CrossRefGoogle Scholar
22.Song, H. and Coble, R., J. Am. Ceram. Soc. 73 (7), 20862090 (1990).CrossRefGoogle Scholar
23.Song, S. and Coble, R.L., J. Am. Ceram. Soc. 73 (7), 20772085 (1990).CrossRefGoogle Scholar
24.Susnitzky, D. W. and Carter, C. B., J. Am. Ceram. Soc. 73 (8), 24852493 (1990).CrossRefGoogle Scholar
25.Zhao, J. and Harmer, M. P., Philos. Mag. Lett. 63 (1), 7 (1991).CrossRefGoogle Scholar
26.Baik, S. and White, C.L., J. Am. Ceram. Soc. 70, 682688 (1987).CrossRefGoogle Scholar
27.Baik, S. and Moon, J. H., J. Am. Ceram. Soc. 74 (4), 819 (1991).CrossRefGoogle Scholar
28.Mukhopadhyay, S. M., Jardine, A. P., and Blakely, J. M., J. Am. Ceram. Soc. 71 (5), 358362 (1988).CrossRefGoogle Scholar
29.Soni, K. K., Thompson, A. M., and R. Levi-Setti, Appl. Phys. Lett. 66 (21), 2795 (1995).CrossRefGoogle Scholar
30.Swiatnicki, W., Lartigue-Korinek, S., and Dubon, A., Mater. Sci. Forum 126/128, 193 (1993).CrossRefGoogle Scholar
31.Swiatnicki, W., Lartigue-Korinek, S., and Laval, J. Y., Acta Metall. 43 (2), 795805 (1995).CrossRefGoogle Scholar
32.Handwerker, C. A., Dynys, J. M., Cannon, R. M., and Coble, R. L., J. Am. Ceram. Soc. 73 (5), 13711377 (1990).CrossRefGoogle Scholar
33.Lartigue-Korinek, S., Carry, C., and Priester, L., Mater. Sci. Forum 170/172, 409 (1994).CrossRefGoogle Scholar
34.Loong, C. K., Vashishta, P., and Ebbsjo, I., Europhys. Lett. 31 (4), 201 (1995).CrossRefGoogle Scholar
35.Soules, T. F., J. Non-Cryst. Solids 123 (1/3), 48 (1990).CrossRefGoogle Scholar
36.Vessal, B., Amini, M., and Catlow, C. R. A., J. Non-Cryst. Solids 159 (1/2), 184 (1993).CrossRefGoogle Scholar
37.Feuston, B. P. and Garofalini, S.H., J. Chem. Phys. 89 (9), 5818– 5824 (1988).CrossRefGoogle Scholar
38.Blonski, S. and Garofalini, S. H., J. Am. Ceram. Soc. 80 (8), 1997– 2004 (1997).CrossRefGoogle Scholar
39.Blonski, S. and Garofalini, S. H., Cat. Lett. 25, 325336 (1994).CrossRefGoogle Scholar
40.Blonski, S. and Garofalini, S. H., Surf. Sci. 295, 263274 (1993).CrossRefGoogle Scholar
41.Blonski, S. and Garofalini, S. H., J. Phys. Chem. 100 (6), 2201– 2205 (1996).CrossRefGoogle Scholar
42.Zirl, D. M. and Garofalini, S.H., J. Am. Ceram. Soc. 73 (10), 28482856 (1990).CrossRefGoogle Scholar
43.Powell-Dogan, C.A. and Heuer, A.H., J. Am. Ceram. Soc. 73 (12), 36843691 (1990).CrossRefGoogle Scholar
44.Powell-Dogan, C.A., Heuer, A.H., and O'Bryan, H.M., J. Am. Ceram. Soc. 77 (10), 2593 (1994).CrossRefGoogle Scholar
45.White, K. W. and Hay, J. C., J. Am. Ceram. Soc. 78 (4), 1025 (1995).Google Scholar