Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:09:33.932Z Has data issue: false hasContentIssue false

Cluster/dislocation interactions in dilute aluminum-based solid solutions

Published online by Cambridge University Press:  03 March 2011

C. Lane Rohrer
Affiliation:
Aluminum Company of America, Alcoa Technical Center, Alloy Technology Division, Alcoa Center, Pennsylvania 15069-0001
Get access

Abstract

The influence of single solute atoms and solute clusters on an extended edge dislocation dipole in Al was studied by atomistic simulation. Single Cu and Ag solute/dislocation interaction energy calculations showed that Cu interacts strongly with an Al extended dislocation and prefers sites in the compressive region, in agreement with elasticity theory predictions. Single Ag atoms, however, are strongly repelled by an Al extended dislocation, in contrast with elasticity theory predictions. Monte Carlo simulations of Al: 1% Cu, Al: 2% Cu, Al: 1% Ag, Al: 0.5% Cu, 0.5% Ag, and Al: 0.75% Cu, 0.25% Ag were carried out in the presence of an extended dislocation dipole at 600 K allowing for solute segregation. Cu atoms in the binary alloys were observed to segregate to the compressive regions of the extended dislocation dipole, forming widespread “atmospheres” over the width of both extended dislocations which did not affect the partial dislocation spacing. Ag in the binary alloy formed small Ag zones which also had little influence on the spacing between the partials. The ternary systems, however, exhibited highly localized solute clusters that had a large impact on the extended dislocation dipole structure, increasing the separation between the partial dislocations. The resulting cluster structures are discussed along with their influence on the apparent stacking fault energy of the alloy systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gallagher, P. C. J., Metall. Trans. 1, 2429 (1970).CrossRefGoogle Scholar
2Venables, J. D., Metall. Trans. 1, 2471 (1970).CrossRefGoogle Scholar
3Mott, N. F. and Nabarro, F.R.N., Proc. Phys. Soc. London, 52, 86(1940).CrossRefGoogle Scholar
4Friedel, J., Dislocations (Pergamon Press, Oxford, 1964).Google Scholar
5Fleischer, R. L., Acta Metall. 9, 996 (1961).Google Scholar
6Labusch, R., Acta Metall. 20, 917 (1971); Labusch, R., Grange, G., Ahearn, J., and Haasen, P. in Rate Processes in Plastic Deformation of Materials, edited by Li, J. C. M. and Mukherjee, A. K. (American Society for Metals, Metals Park, OH, 1975), p. 26.Google Scholar
7Schwink, Ch. and Traub, H., Phys. Status Solidi 30, 387 (1968).CrossRefGoogle Scholar
8Fisher, J. C., Trans. Am. Soc. Met. 47, 451 (1955).Google Scholar
9Kocks, U. F., Metall. Trans. A 16A, 2109 (1985).CrossRefGoogle Scholar
10Hong, S. I. and Laird, C., Acta Metall. 38, 1581 (1990).Google Scholar
11Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
12Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
13Lane Rohrer, C., Modelling Simul. Mater. Sci. Eng. 2, 119 (1994).CrossRefGoogle Scholar
14Murray, J. L., Int. Met. Rev. 30, 211 (1985).Google Scholar
15McAlister, A. J., Bull. Alloy Phase Diagrams 8, 526 (1987).CrossRefGoogle Scholar
16Hatch, J. E., Aluminum: Properties and Physical Metallurgy (American Society for Metals, Metals Park, OH, 1984).Google Scholar
17Murray, J. L., private communication.Google Scholar
18Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
19Smallman, R. E. and Dobson, P. S., Metall. Trans. 1, 2383 (1970).CrossRefGoogle Scholar
20Rautioaho, R. H., Phys. Status Solidi B 112, 83 (1982).CrossRefGoogle Scholar
21Mills, M. J. and Stadelmann, P., Philos. Mag. A 60, 355 (1989).Google Scholar
22Hull, D. and Bacon, D. J., Introduction to Dislocations (Pergamon Press, New York, 1984).Google Scholar
23Devlin, J. F., J. Phys. F: Metal Phys. 4, 1865 (1974).Google Scholar
24Hiikkinen, H., Miikinen, S., and Manninen, M., Phys. Rev. B 41, 12441 (1990).Google Scholar
25Foiles, S. M. and Daw, M. S., private communication.Google Scholar
26Murray, J. L., Int. Met. Rev. 30, 211 (1985).CrossRefGoogle Scholar
27Foiles, S. M., in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W., and Pantelides, S. T. (Mater. Res. Soc. Symp. Proc. 63, Pittsburgh, PA, 1986), p. 61.Google Scholar
28Foiles, S. M. and Seidman, D. N., MRS Bull. XV, 51 (1990).Google Scholar
29Tofpenets, R. L. and Vasil'yeva, L. A., Fiz. Met. Metalloved. [Phys. Met. Metallogr. (USSR)] 54, 381 (1982).Google Scholar
30McAlister, A. J., Bull. Alloy Phase Diagrams 8, 526 (1987).CrossRefGoogle Scholar
31Suzuki, H., Sci. Rep. RITU 4, 455 (1952).Google Scholar
32Guinier, A., J. Phys. Radium, Paris 8, 124 (1942).Google Scholar
33Alexander, K. B., Legoues, F. K., Aaronson, H. I., and Laughlin, D. E., Acta Metall. 32, 2241 (1984).CrossRefGoogle Scholar
34Nicholson, R. B. and Nutting, J., Acta Metall. 9, 332 (1961).CrossRefGoogle Scholar