Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T04:50:49.022Z Has data issue: false hasContentIssue false

Compositional distributions in nanoscale metallic multilayers studied using x-ray mapping

Published online by Cambridge University Press:  31 January 2011

V. J. Keast
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ, United Kingdom
A. Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. E. Mitchell
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

At very small layer spacings (< ∼2 nm) in Cu–Nb and Cu–Cr multilayers the Cu forms a metastable body-centered-cubic (bcc) structure and the films exhibit interesting mechanical properties. No information about the miscibility of bcc Cu in Nb or Cr is available and it is not known whether the films remain compositionally discrete. X-ray mapping in the analytical electron microscope has been used to study the compositional distributions in these films and show that they do remain discrete down to a layer spacing of 1.8 nm. A simple model for the experimentally measured distribution has been used to show that the expected analytical resolution has been achieved and that it should be possible to map layers with a spacing of 0.8 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kung, H. and Foecke, T., MRS Bull. 24, 14 (1999).Google Scholar
2.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D., Scripta Mat. 39, 555 (1998).Google Scholar
3.Mitchell, T.E., Lu, Y-C., Griffin, A.J., Nastasi, M., and Kung, H., J. Am. Ceram. Soc. 80, 1676 (1997).Google Scholar
4.Kung, H., Liu, Y-C., Griffin, A.J., Nastasi, M., Mitchell, T.E., and Embury, J.D., Appl. Phys. Lett. 71, 2103 (1997).CrossRefGoogle Scholar
5.Paxton, A.T., Methfessel, M., and Polatoglou, H.M., Phys. Rev. B: Condens. Matter 41, 8127 (1990).Google Scholar
6.Kang, M.H., Tatar, R.C., Mele, E.J., and Soven, P., Phys. Rev. B: Condens. Matter 35, 5457 (1987).Google Scholar
7.Pizzini, S., Roberts, K.J., Phythian, W.J., English, C.A., and Greaves, G.N., Philos. Mag. Lett. 2, 223 (1990).Google Scholar
8.Schmidt, C., Ernst, F., Finnis, M.W., and Vitek, V., Phys. Rev. Lett. 75, 2160 (1995).Google Scholar
9.Larson, D.J., Petford-Long, A.K., Cerezo, A., and Smith, G.D.W., Acta Mat. 47, 4019 (1999).Google Scholar
10.Keast, V.J., Midgley, P.A., Lloyd, S.J., Thomas, P.J., Weyland, M., Boothroyd, C.B., and Humphreys, C.J., in Electron Microscopy and Microanalysis, edited by Kiely, C.J. (Inst. Phys. Conf. Ser. No. 161, Institute of Physics, Bristol, 1999), p. 35.Google Scholar
11.Keast, V.J., Misra, A., Kung, H., Mitchell, T.E., and Humphreys, C.J., in Electron Microscopy and Microanalysis, edited by Kiely, C.J. (Inst. Phys. Conf. Ser. No. 161, Institute of Physics, Bristol, 1999), p. 211.Google Scholar
12.Keast, V.J. and Williams, D.B., Acta Mater. 47, 3999 (1999).Google Scholar
13.Michael, J.R. and Williams, D.B., J. Microsc. 147, 289 (1987).Google Scholar
14.Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., von Harrach, S., Nicholls, A.W., and Statham, P.J., J. Microsc. 176, 85 (1994).Google Scholar
15.Williams, D.B., Watanabe, M., Carpenter, D.T., and Barmak, K., Mikrochim. Acta S15, 49 (1998).Google Scholar
16.Goldstein, J.I. and Williams, D.B., in Principles of Analytical Electron Microscopy, edited by Joy, D.C., Romig, A.D., and Goldstein, J.I. (Plenum Press, New York, 1986), p. 183.Google Scholar
17.Keast, V.J. and Williams, D.B., J. Microsc 199, 45 (2000).Google Scholar
18.Doig, P. and Flewitt, P.E.J., Met. Trans. A 13, 1397 (1982).Google Scholar