Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T13:22:58.423Z Has data issue: false hasContentIssue false

Controlled growth of ZnO layers and nanowires using methane as reducing precursor

Published online by Cambridge University Press:  25 July 2017

Florian Huber*
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
Anouk Puchinger
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
Waleed Ahmad
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
Manfred Madel
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
Sebastian Bauer
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
Klaus Thonke
Affiliation:
Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, Ulm 89081, Germany
*
a)Address all correspondence to this author. e-mail: florian.huber@uni-ulm.de
Get access

Abstract

Zinc oxide (ZnO) layers and nanowires were grown by chemical vapor deposition (CVD) using methane (CH4) as reducing agent. Compared to conventional CVD processes, which commonly use graphite powder to reduce the ZnO powder source material, this low-cost method allows an improved controllability of the growth processes. Specifically, the consumption of the source material–a commercially available ZnO powder–can be controlled in a very precise way by varying the flow of the reducing CH4 or the re-oxidizing O2. Using this parameter, the growth can be switched between ZnO layers and nanostructures. High-quality ZnO layers have been grown on gallium nitride (GaN) substrates and on c-plane sapphire with an intermediate aluminum nitride (AlN) nucleation layer. By adjusting the growth conditions accordingly, ZnO nanowires were also grown with this method catalyst-free using a- and c-plane sapphire with ZnO nucleation layer as a substrate. The optical properties of the nanowires were investigated by low-temperature photoluminescence (PL) and compared to samples grown by conventional carbo-thermal CVD.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Artur Braun

References

REFERENCES

Ramgir, N.S., Yang, Y., and Zacharias, M.: Nanowire-based sensors. Small 6, 17051722 (2010).Google Scholar
Guo, L., Zhang, H., Zhao, D., Li, B., Zhang, Z., Jiang, M., and Shen, D.: High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens. Actuators, B 166–167, 1216 (2012).Google Scholar
Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., and Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 10031009 (2007).Google Scholar
Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).Google Scholar
Hoffman, R.L., Norris, B.J., and Wager, J.F.: ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733735 (2003).Google Scholar
Grundmann, M., Frenzel, H., Lajn, A., Lorenz, M., Schein, F., and von Wenckstern, H.: Transparent semiconducting oxides. Phys. Status Solidi A 207, 14371449 (2010).Google Scholar
Du, X.Y., Fu, Y.Q., Tan, S.C., Luo, J.K., Flewitt, A.J., Maeng, S., Kim, S.H., Choi, Y.J., Lee, D.S., Park, N.M., Park, J., and Milne, W.I.: ZnO film for application in surface acoustic wave device. J. Phys.: Conf. Ser. 76, 12035 (2007).Google Scholar
Ougazzaden, A., Rogers, D.J., Hosseini Teherani, F., Moudakir, T., Gautier, S., Aggerstam, T., Ould Saad, S., Martin, J., Djebbour, Z., Durand, O., Garry, G., Lusson, A., McGrouther, D., and Chapman, J.N.: Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates. J. Cryst. Growth 310, 944947 (2008).Google Scholar
Lipski, F., Thapa, S.B., Hertkorn, J., Wunderer, T., Schwaiger, S., Scholz, F., Feneberg, M., Wiedenmann, M., Thonke, K., Hochmuth, H., Lorenz, M., and Grundmann, M.: Studies towards freestanding GaN in hydride vapor phase epitaxy by in situ etching of a sacrificial ZnO buffer layer. Phys. Status Solidi C 6, S352S355 (2009).Google Scholar
Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I.: Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl. Phys. Lett. 61, 26882690 (1992).Google Scholar
Maeda, K., Sato, M., Niikura, I., and Fukuda, T.: Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49S54 (2005).Google Scholar
Wang, Z.L.: Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl. Phys. A: Mater. Sci. Process. 88, 715 (2007).Google Scholar
Wang, X., Iwaki, H., Murakami, M., Du, X., Ishitani, Y., and Yoshikawa, A.: Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface. Jpn. J. Appl. Phys. 42, L99L101 (2003).Google Scholar
Ogata, K., Kawanishi, T., Sakurai, K., Kim, S-W., Maejima, K., Fujita, S., and Fujita, S.: Homoepitaxial growth of ZnO by metalorganic vapor phase epitaxy. Phys. Status Solidi B 229, 915919 (2002).Google Scholar
Oleynik, N., Adam, M., Krtschil, A., Bläsing, J., Dadgar, A., Bertram, F., Forster, D., Diez, A., Greiling, A., Seip, M., Christen, J., and Krost, A.: Metalorganic chemical vapor phase deposition of ZnO with different O-precursors. J. Cryst. Growth 248, 1419 (2003).Google Scholar
Ouerfelli, J., Regragui, M., Morsli, M., Djeteli, G., Jondo, K., Amory, C., Tchangbedji, G., Napo, K., and Bernède, J.C.: Properties of ZnO thin films deposited by chemical bath deposition and post annealed. J. Phys. D: Appl. Phys. 39, 19541959 (2006).Google Scholar
Ortega-López, M., Avila-García, A., Albor-Aguilera, M.L., and Sánchez Resendiz, V.M.: Improved efficiency of the chemical bath deposition method during growth of ZnO thin films. Mater. Res. Bull. 38, 12411248 (2003).Google Scholar
Steinfeld, A., Brack, M., Meier, A., Weidenkaff, A., and Wuillemin, D.: A solar chemical reaction for co-production of zinc and synthesis gas. Energy 23, 803814 (1998).CrossRefGoogle Scholar
Ale Ebrahim, H. and Jamshidi, E.: Kinetic study of zinc oxide reduction by methane. Chem. Eng. Res. Des. 79, 6270 (2001).Google Scholar
Cheng, J. and Luo, Y.: Modified explosive diagram for determining gas-mixture explosibility. J. Loss Prev. Process Ind. 26, 714722 (2013).Google Scholar
Zlochower, I.A. and Green, G.M.: The limiting oxygen concentration and flammability limits of gases and gas mixtures. J. Loss Prev. Process Ind. 22, 499505 (2009).Google Scholar
Razus, D., Molnarne, M., and Fuß, O.: Limiting oxygen concentration evaluation in flammable gaseous mixtures by means of calculated adiabatic flame temperatures. Chem. Eng. Process. 43, 775784 (2004).Google Scholar
Zabetakis, M.G.: Flammability characteristics of combustible gases and vapors. Technical Report Bulletin 627, U.S. Bureau of Mines (U.S. Dept. of the Interior, Bureau of Mines, Washington D.C., 1965).CrossRefGoogle Scholar
Reiser, A., Raeesi, V., Prinz, G.M., Schirra, M., Feneberg, M., Röder, U., Sauer, R., and Thonke, K.: Growth of high-quality, uniform c-axis-oriented zinc oxide nano-wires on a-plane sapphire substrate with zinc oxide templates. Microelectron. J. 40, 306308 (2009).Google Scholar
Subannajui, K., Ramgir, N., Grimm, R., Michiels, R., Yang, Y., Müller, S., and Zacharias, M.: ZnO nanowire growth: A deeper understanding based on simulations and controlled oxygen experiments. Cryst. Growth Des. 10, 15851589 (2010).Google Scholar
Li, Y., Feneberg, M., Reiser, A., Schirra, M., Enchelmaier, R., Ladenburger, A., Langlois, A., Sauer, R., Thonke, K., Cai, J., and Rauscher, H.: Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si. J. Appl. Phys. 99, 54307 (2006).Google Scholar
Huber, F., Madel, M., Reiser, A., Bauer, S., and Thonke, K.: New CVD-based method for the growth of high-quality crystalline zinc oxide layers. J. Cryst. Growth 445, 5862 (2016).Google Scholar
Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., and Takasu, H.: Uniaxial locked epitaxy of ZnO on the a face of sapphire. Appl. Phys. Lett. 77, 1801 (2000).Google Scholar
Kong, B.H. and Cho, H.K.: Growth and microstructural characterization of catalyst-free ZnO nanostructures grown on sapphire and GaN by thermal evaporation. J. Mater. Res. 22, 937942 (2007).Google Scholar
Baxter, J.B. and Aydil, E.S.: Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. J. Cryst. Growth 274, 407411 (2005).CrossRefGoogle Scholar
Weigand, C., Tveit, J., Ladam, C., Holmestad, R., Grepstad, J., and Weman, H.: Epitaxial relationships of ZnO nanostructures grown by Au-assisted pulsed laser deposition on c- and a-plane sapphire. J. Cryst. Growth 355, 5258 (2012).Google Scholar
Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V.: Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231260 (2004).Google Scholar
Schirra, M., Schneider, R., Reiser, A., Prinz, G.M., Feneberg, M., Biskupek, J., Kaiser, U., Krill, C.E., Thonke, K., and Sauer, R.: Stacking fault related 3.31 eV luminescence at 130 meV acceptors in zinc oxide. Phys. Rev. B 77, 125215 (2008).Google Scholar