Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T08:33:33.520Z Has data issue: false hasContentIssue false

The degradation of YBa2Cu3O7 resulting from exposure to wet and dry steam

Published online by Cambridge University Press:  31 January 2011

D.K. Pham
Affiliation:
Division of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia
Zhao Ru-Peng
Affiliation:
Division of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia
P.E. Fielding
Affiliation:
Department of Chemistry, University of New England, Armidale, New South Wales 2351, Australia
S. Myhra
Affiliation:
Division of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia
P.S. Turner
Affiliation:
Division of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia
Get access

Abstract

The severity of degradation of YBa2Cu3O7−x from exposure to an aqueous phase has the following dependence: wet steam (condensed thin film) > bulk fluid phase > dry steam, other variables being constant. Also, the surface reactivity increases with oxygen deficiency. It is found that the early stages of degradation are associated with surface hydroxylation and preferential extraction of Ba. Subsequently, dissolution takes place, followed by solution saturation and sequential precipitation, nucleation, and growth of secondary phases. These observations form the basis of a model which incorporates surface hydroxylation and OH penetration of the bulk, formation of planar defects and extraction of Ba, lattice dissolution, and mobility and solubility constraints.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barns, R. L. and Laudise, R. A., Appl. Phys. Lett. 51, 1373 (1987).CrossRefGoogle Scholar
2.Thompson, J. G., Hyde, B. G., Withers, R. L., Anderson, J. S., FitzGerald, J. D., Bitmead, J., Paterson, M. S., and Stewart, A. M., Mater. Res. Bull. XXII, 1715 (1987).CrossRefGoogle Scholar
3.Yan, M. F., Barns, R. L., O'Bryan, H. M., Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 572 (1987).CrossRefGoogle Scholar
4.Zandbergen, H. W., Gronsky, R., and Thomas, G., Phys. Status Solidi (A) 105, 207 (1988).CrossRefGoogle Scholar
5.Rosamilia, J. M., Miller, B., Schneemeyer, L. F., Waszczak, J. W., and O'Bryan, H. M., J. Electrochem. Soc. 134, 1863 (1987).CrossRefGoogle Scholar
6.Gallagher, P. K., O'Bryan, H. M., Sunshine, S. A., and Murphy, D. W., Mater. Res. Bull. XXII, 995 (1987).CrossRefGoogle Scholar
7.Horowitz, H. S., Bordia, R. K., Flippen, R. B., Johnson, R. E., and Chowdhry, U., Mater. Res. Bull. XXIII, 821 (1988).CrossRefGoogle Scholar
8.Myhra, S., Chalker, P. R., Moseley, P. T., and Riviere, J. C., Physica C 165, 280 (1990).CrossRefGoogle Scholar
9.Pham, D. K., Neall, F. B., Myhra, S., Smart, R. St. C., and Turner, P. S., in Scientific Basis for Nuclear Waste Management XII, edited by Lutze, W. and Ewing, R. C. (Mater. Res. Soc. Symp. Proc. 127, Pittsburgh, PA, 1989), p. 231.Google Scholar
10.Kastrissios, T., Stephenson, M., Turner, P. S., and White, T. J., J. Am. Ceram. Soc. 70, C144 (1987).CrossRefGoogle Scholar
11.Turner, P. S., Jones, C. F., Myhra, S., Neall, F. B., Pham, D. K., and Smart, R. St. C., in Surfaces and Interfaces of Ceramic Materials, edited by Dufour, L. C., Monty, C., and Petit-Ervas, G. (Kluwer Academic Press, 1989), p. 663.CrossRefGoogle Scholar
12.Holland, G. F., Hoskins, R. L., Dixon, M. A., Nooy, P. D. Ver, Zurloge, H-C., Brimhall, G., Sullivan, D., Cornia, R., Zandbergen, H. W., Gronsky, R., and Stacy, A. M., in “Chemistry of High-Temperature Superconductors”, edited by Nelson, D. L., Whittingham, M. S., and George, T. F., ACS Symp. 351 (ACS, Washington, DC, 1987), p. 102.Google Scholar
13.Bansal, N. P. and Sandkuhl, A. L., Appl. Phys. Lett. 52, 323 (1988).CrossRefGoogle Scholar
14.Hyde, B. G., Thompson, J. G., Withers, R. L., FitzGerald, J. G., Stewart, A. M., Bevan, D. J. M., Anderson, J. S., Bitmead, J., and Paterson, M. S., Nature 327, 402 (1987).CrossRefGoogle Scholar
15.Nishihara, H., Nishida, N., Takabataki, T., Kishio, K., Ohtomo, A., Hayashi, K., Ishikawa, M., Nakazawa, Y., Koga, K., Tamegai, T., and Kitazawa, K., Jpn. J. Appl. Phys. 27, 1652 (1988).CrossRefGoogle Scholar
16.Kurtz, R. L., Stockbauer, R., Madey, T. E., Muller, D., Shih, A., and Toth, L., Phys. Rev. B 37, 7936 (1988).CrossRefGoogle Scholar
17.Nefedov, V. I., Sokolov, A. N., Tyzykhov, M. A., Oleinikov, N. N., Yeremina, Ye. A., and Kolotyrkina, M. A., J. Elect. Spectrosc. Rel. Phenom. 49, 47 (1989).CrossRefGoogle Scholar
18.Trolier, S. E., Atkinson, S. D., Fuierer, P. A., Adair, J. H., and Newnham, R. E., Am. Ceram. Soc. Bull. 67, 759 (1988).Google Scholar
19.Karioris, F. G. and Vance, E. R., Mater. Lett. 6, 16 (1987).CrossRefGoogle Scholar
20.Dexin, Z., Mingshan, X., Ziqing, Z., Shubin, Y., Huansui, Z., and Shuxia, S., Solid State Commun. 65, 339 (1988).CrossRefGoogle Scholar
21.Wang, J., Stevens, R., and Bultitude, J., J. Mater. Sci. 23, 3393 (1988).CrossRefGoogle Scholar