Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T03:44:52.828Z Has data issue: false hasContentIssue false

Densification of Al2O3 Powder Using Spark Plasma Sintering

Published online by Cambridge University Press:  31 January 2011

S. W. Wang
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
L. D. Chen
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
T. Hirai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

Al2O3 powders with four different particle sizes were densified using a spark plasma sintering (SPS) apparatus under three different sintering conditions: holding time, heating rate, and mechanical pressure. The Al2O3 powder compact sintered at a higher heating rate produced a sample with a higher density and a fine-grained microstructure, while abnormal grain growth and a lower density resulted when a lower heating rate was applied, though the sintering temperature and holding time were the same in both cases. This revealed that rapid sintering by SPS was effective for promoting the densification of the powder. However, the powder with a coarse particle size was hard to sinter at a higher heating rate. Microstructural observation revealed that the edge part was denser than the inside of the sample when the holding time was short. Increasing the holding time made it possible for the inside to be sintered almost as dense as the edge part. Mechanical pressure was found to enhance densification of the Al2O3 powder. On the basis of these results, the SPS process is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Omori, M. and Hirai, T., New Ceram. 7, 23 (1994).Google Scholar
2.Wada, M. and Yamashita, F., in Proc. Int. Magnetic Conf. (Magnetic Soc. of the Institute of Electrical and Electrons Engineers, Brighton, United Kingdom, 1990), p. 2601.Google Scholar
3.Matsugi, K., Hatayama, T., and Yanagisawa, O., J. Jpn. Inst. Met. 59, 740 (1995).CrossRefGoogle Scholar
4.Risbud, S.H., Shan, C.H., Mukherjee, A.K., Bow, J.S., and Holl, R.A., J. Mater. Res. 10, 237 (1995).Google Scholar
5.Nishimura, T., Mitomo, M., Hirotsuru, H., and Kawahara, M., J. Mater. Sci. Lett. 14, 1046 (1995).CrossRefGoogle Scholar
6.Risbud, S.H. and Shan, C.H., Mater. Lett. 20, 149 (1994).CrossRefGoogle Scholar
7.Shan, C.H., Risbud, S.H., Yamazaki, K., and Shoda, K., Mater. Sci. Eng. B 26, 55 (1994).CrossRefGoogle Scholar
8.Yoshimura, M., Ohji, T., Sando, M., Choa, Y-H., Sekino, T., and Niihara, K., Mater. Lett. 38, 18 (1999).CrossRefGoogle Scholar
9.Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., De La Torre, S.D., and Nishikawa, Y., in Proc. of the 2nd Inter. Symp. On the Science of Engineering Ceramics (EnCera'98), edited by Niihara, K., Sekino, T., Yasuda, E., and Sasa, T. (Osaka, Japan, 1998), p. 401.Google Scholar
10.Omori, M., Okubo, A., Gilhwan, K., and Hirai, Y., J. Mater. Syn. Proc. 5, 279 (1997).Google Scholar
11.Kang, Y.S., Noda, K., Chen, L.D., Moriya, S., and Niino, M., in Joint ASME, ASCE & SES Summer Meeting (McNU'97) (Northwestern University, Evanston, IL, 1997), p. 414.Google Scholar
12.Omori, M. and Hirai, , New Ceram. 7, 27 (1994).Google Scholar
13.Orihashi, M., Noda, Y., Chen, L.D., Kang, Y.S., Moro, A., and Hirai, T., in Proc. 4th Int. Symp. on Functional Gradient Materials, edited by Shiota, I. and Miyamoto, Y. (AIST Tsukuba Research Center, Tsukuba, Japan, 1996), p. 569.Google Scholar
14.Ishiyama, Y., in Proc. of 1993 Powder Metallurgy World Congress, edited by Bando, Y. and Kosuge, K. (Japan Society of Powder and Powder Metallurgy, Kyoto, Japan, 1993), p. 931.Google Scholar
15.Tokita, M., J. Soc. Powder Technol. Jpn. 30, 790 (1993).CrossRefGoogle Scholar
16.Risbud, S.H., Groza, J.R., and Kim, M.J., Philos. Mag. B 69, 525 (1994).CrossRefGoogle Scholar
17.Omori, M., J. Jpn. Soc. Powder Powder Metall. 45, 1055 (1998).CrossRefGoogle Scholar
18.Kinemuchi, Y., Funakoshi, H., and Ishizaki, K., J. Ceram. Soc. Jpn. 106, 535 (1998).Google Scholar
19.Tomino, H., Watanabe, H., and Kondo, Y., J. Jpn. Soc. Powder Powder Metall. 44, 974 (1997).CrossRefGoogle Scholar
20.Sumi, S., Mizutani, Y., and Yoneya, M., J. Jpn. Soc. Powder Powder Metall. 45, 153 (1998).CrossRefGoogle Scholar
21.Wang, S.W., Chen, L.D., Kang, Y.S., Niino, M., and Hirai, T., Mater. Res. Bull. (in press).Google Scholar
22.Kingery, W.D., Bowen, H.K, and Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (Wiley-Interscience, New York, 1976).Google Scholar
23.Harmer, M.P. and Brook, R.J., J. Br. Ceram. Soc. 80, 147 (1981).Google Scholar
24.Wang, S.W., Chen, L.D., Kang, Y.S., and Hirai, T., J. Mater. Sci. Lett. 18, 1119 (1999).CrossRefGoogle Scholar
25.Chen, D-J. and Mayo, M.J., J. Am. Ceram. Soc. 79, 906 (1996).Google Scholar
26.Song, Huesup and Coble, R.L., J. Am. Ceram. Soc. 73, 2077 (1990).CrossRefGoogle Scholar
27.Koyama, T., Nishiyama, A., and Niihara, K., J. Mater. Sci. 28, 5952 (1993).Google Scholar
28.Bae, S.I. and Baik, S., J. Mater. Sci. 28, 4197 (1993).Google Scholar
29.Makino, Y., New Ceram. 10, 39 (1997).Google Scholar