Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T20:37:37.006Z Has data issue: false hasContentIssue false

Detection of surface electronic defect states in low and high-k dielectrics using reflection electron energy loss spectroscopy

Published online by Cambridge University Press:  15 October 2013

Benjamin L. French
Affiliation:
Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248
Sean W. King*
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124
*
a)Address all correspondence to this author. e-mail: sean.king@intel.com
Get access

Abstract

The continuation of Moore's law requires new materials at both extremes of the dielectric permittivity spectrum and an increased understanding of the fundamental mechanisms limiting their electrical reliability. To address the latter, reflection electron energy loss spectroscopy has been utilized to measure the band gap of various oxide-based low and high dielectric constant (k) materials of interest to the semiconductor industry. In situ Ar+ sputtering has been additionally utilized to simulate process-induced defect states that are believed to contribute to electrical leakage, time-dependent dielectric breakdown, charge trapping, and other fixed-charge reliability issues in nano-electronic devices. It is observed that Ar+ sputtering predominantly generates surface oxygen vacancy defects in the upper portion of the band gap for both low and high-k dielectric materials. These results are in agreement with numerous theoretical investigations of defects in low and high-k dielectric materials and models for mechanisms that limit their reliability.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Solomon, P.: Breakdown in silicon oxide: A review. J. Vac. Sci. Technol. 14, 1122 (1977).CrossRefGoogle Scholar
Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., and Yanovitskaya, Z.S.: Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).CrossRefGoogle Scholar
Volksen, W., Miller, R.D., and Dubois, G.: Low dielectric constant materials. Chem. Rev. 110, 56 (2010).CrossRefGoogle ScholarPubMed
Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
Dennard, R.H., Gaensslen, F.H., Yu, H.N., Rideout, V.L., Bassous, E., and LeBlanc, A.R.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256 (1974).CrossRefGoogle Scholar
Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).CrossRefGoogle Scholar
Moore, G.: Cramming more components onto integrated circuits. Electron. Mag. 38, 4 (1965).Google Scholar
Auth, C., Cappellani, A., Chun, J.-S., Dalis, A., Davis, A., Ghani, T., Glass, G., Glassman, T., Harper, M., Hattendorf, M., Hentges, P., Jaloviar, S., Joshi, S., Klaus, J., Kuhn, K., Lavric, D., Lu, M., Mariappan, H., Mistry, K., Norris, B., Rahhal-orabi, N., Ranade, P., Sandford, J., Shifren, L., Souw, V., Tone, K., Tambwe, F., Thompson, A., Towner, D., Troeger, T., Vandervoorn, P., Wallace, C., Wiedemer, J., and Wiegand, C.: 45nm high-k + metal gate strain-enhanced transistors. In IEEE VLSI Technology Symposium, Honolulu, HI, 2008; p. 128.Google Scholar
Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., and Ghibaudo, G.: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5 (2005).CrossRefGoogle Scholar
Kerber, A. and Cartier, E.A.: Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks. IEEE Trans. Device Mater. Reliab. 9, 147 (2009).CrossRefGoogle Scholar
Haase, G.: A model for electric degradation of interconnect low-k dielectrics in microelectronic integrated circuits. J. Appl. Phys. 105, 44908 (2009).CrossRefGoogle Scholar
Kuhn, K.J.: Moore’s crystal ball: Device physics and technology past the 15 nm generation. Microelectron. Eng. 88, 1044 (2011).CrossRefGoogle Scholar
International Technology Roadmap for Semiconductors (ITRS): 2009 (Semiconductor Industry Association, San Jose, CA, 2009). http://www.itrs.net/Links/2009ITRS/Home2009.htm.Google Scholar
Ou, Y., Wang, P., He, M., Lu, T., Leung, P., and Spooner, T.: Conduction mechanisms of Ta/porous SiCOH films under electrical bias. J. Electrochem. Soc. 155, G283 (2008).CrossRefGoogle Scholar
Wang, R., Chang-Liao, K., Wang, T., Chang, M., Wang, C., Lin, C., Lee, C., Chiu, C., and Wu, K.: Electrical conduction and TDDB reliability characterization for low-k SiCO dielectric in Cu interconnects. Thin Solid Films 517, 1230 (2008).CrossRefGoogle Scholar
Yeo, Y.C., King, T.J., and Hu, C.: Dielectric tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091 (2002).CrossRefGoogle Scholar
Xu, Z., Houssa, M., De Gendt, S., and Heyns, M.: Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks. Appl. Phys. Lett. 80, 1975 (2002).CrossRefGoogle Scholar
Chiang, C., Ko, I., Chen, M., Wu, Z., Lu, Y., Jang, S., and Liang, M.: Improvement in leakage current and breakdown field of Cu-comb capacitor using a silicon oxycarbide dielectric barrier. J. Electrochem. Soc. 151, G606 (2004).CrossRefGoogle Scholar
Chen, F. and Shinovsky, M.: Soft breakdown characteristics of ultralow-k time dependent dielectric breakdown for advanced complementary metal-oxide semiconductor technologies. J. Appl. Phys. 108, 54107 (2010).CrossRefGoogle Scholar
Lombardo, S., Stathis, J.H., Linder, B.P., Pey, K.L., Palumbo, F., and Tung, C.H.: Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301 (2005).CrossRefGoogle Scholar
McPherson, J.: Time dependent dielectric breakdown physics – models revisited. Microelectron. Reliab. 52, 1753 (2012).CrossRefGoogle Scholar
Chen, F. and Shinovsky, M.: Addressing Cu/low-k dielectric TDDB-reliability challenges for advanced CMOS technologies. IEEE Trans. Electron Devices 56, 2 (2009).CrossRefGoogle Scholar
Zhao, L., Pantouvaki, M., Croes, K., Tokei, Z., Barbarin, Y., Wilson, C., Baklanov, M., Beyer, G., and Claeys, C.: Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials. Appl. Phys. Lett. 99, 222110 (2011).CrossRefGoogle Scholar
Kauerauf, T., Degraeve, R., Cartier, E., Soens, C., and Groeseneken, G.: Low Weibull slope of breakdown distributions in high-k layers. IEEE Electron Device Lett. 23, 215 (2002).CrossRefGoogle Scholar
Rosenbaum, E. and Register, L.F.: Mechanism of stress-induced leakage current in MOS capacitors. IEEE Trans. Electron Devices 44, 317 (1997).CrossRefGoogle Scholar
Pae, S., Ghani, T., Hattendorf, M., Hicks, J., Jopling, J., Maiz, J., Mistry, K., O’Donnell, J., Prasad, C., Wiedemer, J., and Xu, J.: Characterization of SILC and its end-of-life reliability assessment on 45 nm high-k and metal-gate technology. In Proceedings of the IEEE International Reliability Physics Symposium, Montreal, QC (IEEE, 2009); p. 499.Google Scholar
Zhou, X.J., Tsetseris, L., Rashkeev, S.N., Fleetwood, D.M., Schrimpf, R.D., Pantelides, S.T., Felix, J.A., Gusev, E.P., and D’Emic, C.: Negative bias-temperature instabilities in metal-oxide-silicon devices with SiO2 and SiOxNy/HfO2 gate dielectrics. Appl. Phys. Lett. 84, 4394 (2004).CrossRefGoogle Scholar
Rahman, A., Agostinelli, M., Bai, P., Curello, G., Deshpande, H., Hafez, W., Jan, C-H., Komeyli, K., Park, J., Phoa, K., Tsai, C., Yen, J-Y., and Xu, J.: Reliability studies of a 32 nm System-on-chip (SOC) platform technology with 2nd generation high-k/metal gate transistors. Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA (IEEE, 2011); p. 533.Google Scholar
Lauer, J.L., Sinha, H., Nichols, M.T., Antonelli, G.A., Nishi, Y., and Shohet, J.L.: Charge trapping within UV and vacuum UV irradiated low-k porous organosilicate dielectrics. J. Electrochem. Soc. 157, G177 (2010).CrossRefGoogle Scholar
Atkin, J., Cartier, E., Shaw, T.M., Laibowitz, R.B., and Heinz, T.F.: Charge trapping at the low-k dielectric-silicon interface probed by the conductance and capacitance techniques. Appl. Phys. Lett. 93, 122902 (2008).CrossRefGoogle Scholar
Zhu, W.J., Ma, T.P., and Tamagawa, T.: Charge trapping in ultrathin hafnium oxide. IEEE Electron Device Lett. 23, 597 (2002).CrossRefGoogle Scholar
Bargallo Gonzalez, M., Rafi, J.M., Beldarrain, O., Zabala, M., and Campabadal, F.: Charge trapping analysis of Al2O3 films deposited by atomic layer deposition using H2O or O3 as oxidant. J. Vac. Sci. Technol., B 31, 1A101 (2013).CrossRefGoogle Scholar
Sinha, H., Nichols, M., Sehgal, A., Tomoyasu, M., Russell, N., Antonelli, G., Nishi, Y., and Shohet, J.: Effect of vacuum ultraviolet and ultraviolet irradiation on mobile charges in the bandgap of low-k-porous organosilicate dielectric. J. Vac. Sci. Technol. 29, 10601 (2011).CrossRefGoogle Scholar
Bersuker, G., Zeitzoff, P., Sim, J.H., Lee, B.H., Choi, R., Brown, G., and Young, C.D.: Mobility evaluation in transistors with charge-trapping gate dielectrics. Appl. Phys. Lett. 87, 42905 (2005).CrossRefGoogle Scholar
Ligatchev, V., Wong, T.K.S., Liu, B., and Rusli, : Atomic structure and defect densities in low dielectric constant carbon doped hydrogenated silicon oxide films, deposited by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 92, 4605 (2002).CrossRefGoogle Scholar
Atkin, J.M., Song, D.. Shaw, T.M., Cartier, E., Laibowitz, R.B., and Heinz, T.F.: Photocurrent spectroscopy of low-k dielectrics materials: Barrier heights and trap densities. J. Appl. Phys. 103, 94104 (2008).CrossRefGoogle Scholar
Atkin, J.M., Cartier, E., Shaw, T.M., Lloyd, J.R., Laibowitz, R.B., and Heinz, T.F.: The evolution of optical and electrical properties of low-k dielectrics under bias stress. Microelectron. Eng. 86, 1891 (2009).CrossRefGoogle Scholar
Bersuker, G., Sim, J.H., Young, C.D., Choi, R., Zeitzoff, M., Brown, G.A., Lee, B.H., and Murto, R.W.: Effect of pre-existing defects on reliability assessment of high-k gate dielectrics. Microelectron. Reliab. 44, 1509 (2004).Google Scholar
Houssa, M., Tuominen, M., Naili, M., Afanas’ev, V., Stesmans, A., Haukka, S., and Heyns, M.M.: Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615 (2000).CrossRefGoogle Scholar
Harrari, E. and Royce, B.S.H.: Trap structure of pyrolytic Al2O3 in MOS capacitors. Appl. Phys. Lett. 22, 106 (1973).CrossRefGoogle Scholar
Ludeke, R., Cuberes, M.T., and Cartier, E.: Local transport and trapping issues in Al2O3 gate oxide structures. Appl. Phys. Lett. 76, 2886 (2000).CrossRefGoogle Scholar
Specht, M., Stadele, M., Jakschik, S., and Schroder, U.: Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics. Appl. Phys. Lett. 84, 3076 (2004).CrossRefGoogle Scholar
Blank, O., Reisinger, H., Stengl, R., Gutsche, M., Wiest, F., Capodieci, V., Schulze, J., and Eisele, I.: A model for multistep trap-assisted tunneling in thin high-k dielectrics. J. Appl. Phys. 97, 44107 (2005).CrossRefGoogle Scholar
Sambuco-Salomone, L., Lipovetsky, J., Carbonetto, S.H., Garcia Inza, M.A., Redin, E.G., Campabadal, F., and Faigon, A.: Experimental evidence and modeling of two types of electron traps in Al2O3 for nonvolatile memory applications. J. Appl. Phys. 113, 74501 (2013).CrossRefGoogle Scholar
Chaves, J.R., Devine, R.A.B., and Koltunski, L.: Evidence for hole and electron trapping in plasma deposited thin films. J. Appl. Phys. 90, 4284 (2001).CrossRefGoogle Scholar
Stathis, J.H.: Physical and predictive models of ultrathin oxide reliability in CMOS devices and circuits. IEEE Trans. Dev. Mater. Reliab. 1, 43 (2001).CrossRefGoogle Scholar
Lenahan, P.M. and Conley, J.F. Jr: What can electron paramagnetic resonance tell us about the Si/SiO2 system?. J. Vac. Sci. Technol., B 16, 2134 (1998).CrossRefGoogle Scholar
Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16 (1998).CrossRefGoogle Scholar
Anderson, N.L., Vedula, R.P., Schultz, P.A., Van Ginhoven, R.M., and Strachan, A.: Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica. Appl. Phys. Lett. 100, 172908 (2012).CrossRefGoogle Scholar
Heyns, M. and Tsai, W.: Ultimate scaling of CMOS logic devices with Ge and III-V materials. MRS Bull. 34, 485 (2009).CrossRefGoogle Scholar
Kim, K., Choi, J.Y., Kim, T., Cho, S.H., and Chung, H.J.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338 (2011).CrossRefGoogle ScholarPubMed
Murali, R., Brenner, K., Yang, Y., Beck, T., and Meindl, J.D.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30, 611 (2009).CrossRefGoogle Scholar
Chen, X., Akinwande, D., Lee, K.J., Close, G.F., Yasuda, S., Paul, B.B., Fujita, S., Kong, J., and Philip Wong, H.S.: Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electron Devices 57, 3137 (2010).CrossRefGoogle Scholar
Tsai, W., Goel, N., Koveshnikov, S., Majhi, P., and Wang, W.: Challenges of integration of high-k dielectrics with III-V materials. Microelectron. Eng. 86, 1540 (2009).CrossRefGoogle Scholar
Lin, L. and Robertson, J.: Passivation of interfacial defects at III-V oxide interfaces. J. Vac. Sci. Technol., B 30, 4E101 (2012).CrossRefGoogle Scholar
Nagashino, K., Yamashita, T., Nishimura, T., Kita, K. and Tonumi, A.: AU11 Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 110, 24513 (2011).CrossRefGoogle Scholar
Fan, X.F., Zheng, W.T., Chihaia, V., Shen, Z.X., and Kuo, J.L.: Interaction between graphene and the surface of SiO2. J. Phys. Condens. Matter 24, 305004 (2012).CrossRefGoogle ScholarPubMed
Ngwan, V.C., Zhu, C., and Krishnamoorthy, A.: Dependence of leakage mechanisms on dielectric barrier in Cu-SiOC damascene interconnects. Appl. Phys. Lett. 84, 2316 (2004).CrossRefGoogle Scholar
Yiang, K.Y., Yoo, W.J., Guo, Q., and Krishnamoorthy, A.: Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method. Appl. Phys. Lett. 83, 524 (2003).CrossRefGoogle Scholar
Gischia, G.G., Croes, K., Groeseneken, G., Tokei, Z., Afanas’ev, V., and Zhao, L.: Study of leakage mechanism and trap density in porous low-k materials. Proceedings of the IEEE International Reliability Physics Symposium, Anaheim, CA (IEEE, 2010); p. 539.Google Scholar
Jegert, G., Kersch, A., Weinreich, W., Schroder, U., and Lugli, P.: Modeling of leakage currents in high-k dielectrics: Three dimensional approach via Monte Carlo. Appl. Phys. Lett. 96, 62113 (2010).CrossRefGoogle Scholar
Ruiz Agaudo, D., Govoreanu, B., Dong Zhang, W., Jurczak, M., De Meyer, K., and Van Houdt, J.: A novel trapping/detrapping model for defect profiling in high-k materials using the two-pulse capacitance-voltage technique. IEEE Trans. Electron Devices 57, 2726 (2010).Google Scholar
Wang, M., He, W., and Ma, T.P.: Electron tunneling spectroscopy study of traps in high-k gate dielectrics: Determination of physical locations and energy levels of traps. Appl. Phys. Lett. 86, 192113 (2005).CrossRefGoogle Scholar
Liu, Z. and Ma, T.P.: Determination of energy and spatial distributions of traps in ultrathin dielectrics by use of inelastic electron tunneling spectroscopy. Appl. Phys. Lett. 97, 172102 (2010).CrossRefGoogle Scholar
Rao, R. and Irrera, F.: Detrapping dynamics in Al2O3 metal-oxide-semiconductor. J. Appl. Phys. 107, 103708 (2010).CrossRefGoogle Scholar
Yeh, C.C., Ma, T.P., Ramaswamy, N., Rocklein, N., Gealy, D., Graettinger, T., and Min, K.: Frenkel-Poole trap energy extraction of atomic layer deposited Al2O3 and HfxAlyO thin films. Appl. Phys. Lett. 91, 113521 (2007).CrossRefGoogle Scholar
Zheng, X.F., Zhang, W.D., Govoreanu, B., Zhang, J.F., and van Houdt, J.: A new multipulse technique for probing electron trap energy distribution in high-k materials for flash memory application. IEEE Trans. Elect. Dev. 57, 2484 (2010).CrossRefGoogle Scholar
Winslow, D.W., Johnson, J.P., and Williams, C.C.: Nanometer scale study of HfO2 trap states using single electron tunneling force spectroscopy. Appl. Phys. Lett. 98, 172903 (2011).CrossRefGoogle Scholar
Jeong, D.S. and Hwang, C.S.: Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98, 113701 (2005).CrossRefGoogle Scholar
Shamuilia, S., Afanas’ev, V., Somers, P., Stesmans, A., Li, Y., Tokei, Z., Groeseneken, G., and Maex, K.: Internal photoemission of electrons at interfaces of metals with low-k insulators. Appl. Phys. Lett. 89, 202909 (2006).CrossRefGoogle Scholar
Tanbara, K. and Kamigaki, Y.: Paramagnetic defect generation and microstructure change in porous low-k SiOCH films with vacuum baking. J. Electrochem. Soc. 157, G95 (2010).CrossRefGoogle Scholar
Ren, H., Nichols, M., Jiang, G., Antonelli, G., Nishi, Y., and Shohet, J.: Defects in low-k organosilicate glass and their response to processing as measured with electron-spin resonance. Appl. Phys. Lett. 98, 102903 (2011).CrossRefGoogle Scholar
Afanas’ev, V., Keunen, K., Stesmans, A., Jivanescu, M., Tokei, Z., Baklanov, M., and Beyer, G.: Electron spin resonance study of defects in low-k oxide insulators (k=2.5-2.0). Microelectron. Eng. 88, 1503 (2011).CrossRefGoogle Scholar
Kang, A.Y., Lenahan, P.M., Conley, J.F. Jr., and Solanki, R.: Electron spin resonance study of interface defects in atomic layer deposited hafnium oxide on Si. Appl. Phys. Lett. 81, 1128 (2002).CrossRefGoogle Scholar
Kang, A.Y., Lenahan, P.M., and Conley, J.F. Jr.: Electron spin resonance observation of trapped electron centers in atomic layer deposited hafnium oxide on Si. Appl. Phys. Lett. 83, 3407 (2003).CrossRefGoogle Scholar
Lenahan, P.M. and Conley, J.F. Jr.: Magnetic resonance studies of trapping centers in high-k dielectric films on silicon. IEEE Trans. Dev. Mater. Reliab. 5, 90 (2005).CrossRefGoogle Scholar
Kanashima, T., Ikeda, K., Tada, T., Sohgawa, M., and Okuyama, M.: Electron spin resonance characterization of defects in high-k HfO2 thin film prepared by pulsed laser deposition. J. Korean Phys. Soc. 46, 258 (2005).Google Scholar
Triplett, B.B., Chen, P.T., Nishi, Y., Kasai, P.H., Chambers, J.J., and Colombo, L.: Electron spin resonance study of as-deposited and annealed (HfO2)x(SiO2)1-x high-k dielectrics on Si. J. Appl. Phys. Lett. 101, 13703 (2007).Google Scholar
Barklie, R.C. and Wright, S.: Electron paramagnetic resonance characterization of defects in HfO2 and ZrO2 powders and films. J. Vac. Sci. Technol., B 27, 317 (2009).CrossRefGoogle Scholar
Wright, S. and Barklie, R.C.: Electron paramagnetic resonance characterization of defects in monoclinic HfO2 and ZrO2 powders. J. Appl. Phys. 106, 103917 (2009).CrossRefGoogle Scholar
Bartram, R.H., Swenberg, C.E., and Fournier, J.T.: Theory of trapped-hole centers in aluminum oxide. Phys. Rev. 139, 941 (1965).CrossRefGoogle Scholar
Ciraci, S. and Batra, I.P.: Electronic structure of α-alumina and its defect states. Phys. Rev. B 28, 982 (1983).CrossRefGoogle Scholar
Dienes, G.J., Welch, D.O., Fischer, C.R., Hatcher, R.D., Lazareth, O., and Samberg, M.: Shell-model calculation of some point-defect properties in α-Al2O3. Phys. Rev. B 11, 3060 (1975).CrossRefGoogle Scholar
Stashans, A., Kotomin, E., and Calais, J-L.: Calculations of the ground and excited states of F-type centers in corundum crystal. Phys. Rev. B 49, 14854 (1994).CrossRefGoogle Scholar
Xu, Y-N., Gu, Z-Q., Zhong, Z-F., and Ching, W.Y.: Ab-initio calculations for the neutral and charged O vacancy in sapphire. Phys. Rev. B 56, 7277 (1997).CrossRefGoogle Scholar
Matsunaga, K., Tanaka, T., Yamamoto, T., and Ikuhara, Y.: First principles calculations of intrinsic defects in Al2O`3. Phys. Rev. B 68, 85110 (2003).CrossRefGoogle Scholar
Carrasco, J., Gomes, J.R.B., and Illas, F.: Theoretical study of bulk and surface oxygen and aluminum vacancies in α-Al2O3. Phys. Rev. B 69, 64116 (2004).CrossRefGoogle Scholar
Liu, D., Clark, S.J., and Robertson, J.: Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 32905 (2010).CrossRefGoogle Scholar
Weber, J.R., Janotti, A., and Van de Walle, C.G.: Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J. Appl. Phys. 109, 33715 (2011).CrossRefGoogle Scholar
Choi, M., Janotti, A., and Van de Walle, C.: Native point defects and dangling bonds in α-Al2O3. J. Appl. Phys. 113, 44501 (2013).CrossRefGoogle Scholar
Kang, J., Lee, E-C., Chang, K.J., and Jin, Y-G.: H-related defect complexes in HfO2: A model for positive fixed charge defects. Appl. Phys. Lett. 84, 3894 (2004).CrossRefGoogle Scholar
Gavartin, J.L., Munoz Ramo, D., Shluger, A.L., Bersuker, G., and Lee, B.H.: Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 82908 (2006).CrossRefGoogle Scholar
Xiong, K., Robertson, J., Gibson, M.C., and Clark, S.J.: Defect energy levels in HfO2 high-dielectric-constant gate oxide. Appl. Phys. Lett. 87, 183505 (2005).CrossRefGoogle Scholar
Feng, Y.P., Lim, A.T.L., and Li, M.F.: Negative-U property of oxygen vacancy in cubic HfO2. Appl. Phys. Lett. 67, 62105 (2005).CrossRefGoogle Scholar
Gillen, R., Robertson, J., and Clark, S.J.: Electron spin resonance signature of the oxygen vacancy in HfO2. Appl. Phys. Lett. 101, 102904 (2012).CrossRefGoogle Scholar
Ramo, D.M., Shluger, A.L., Gavartin, J.L., and Bersuker, G.: Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 99, 155504 (2007).CrossRefGoogle Scholar
Ramo, D., Gavartin, J.L., Shluger, A.L., and Bersuker, G.: Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B 75, 205336 (2007).CrossRefGoogle Scholar
Ramo, D.M., Sushko, P.V., Gavartin, J.L., and Shluger, A.L.: Oxygen vacancies in cubic ZrO2 nanocrystals studied by an ab initio embedded cluster method. Phys. Rev. B 78, 235432 (2008).CrossRefGoogle Scholar
Chen, T.J. and Kuo, C.L.: First principles study of the oxygen vacancy formation and the induced defect states in hafnium silicates. J. Appl. Phys. 111, 74106 (2012).CrossRefGoogle Scholar
Foster, A.S., Sulimov, V.B., Lopez Gejo, F., Shluger, A.L., and Nieminen, R.M.: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64, 224108 (2001).CrossRefGoogle Scholar
Zheng, J.X., Ceder, G., Maxisch, T., Chim, W.K., and Choi, W.K.: First-principles study of native point defects in hafnia and zirconia. Phys. Rev. B 75, 104112 (2007).CrossRefGoogle Scholar
Robertson, J., Xiong, K., and Falabretti, B.: Point defects in ZrO2 high-k gate oxide. IEEE Trans. Dev. Mater. Reliab. 5, 84 (2005).CrossRefGoogle Scholar
Catlow, C.R.A., James, R., Mackrodt, W.C., and Stewart, R.F.: Defects energetics in α-Al2O3 and rutile TiO2. Phys. Rev. B 25, 1006 (1982).CrossRefGoogle Scholar
Yu, N. and Woods Halley, J.: Electronic structure of point defects in rutile TiO2. Phys. Rev. B 51, 4768 (1995).CrossRefGoogle ScholarPubMed
Na-Phtattalung, S., Smith, M.F., Kim, K., Du, M-H., Wei, S-H., Zhang, S.B., and Limpijumnong, S.: First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006).CrossRefGoogle Scholar
Nolan, M., Elliott, S.D., Mulley, J.S., Bennett, R.A., Basham, M., and Mulheran, P.: Electronic structure of point defects in controlled self-doping of the TiO2 (110) surface: Combined photoemission spectroscopy and density functional theory study. Phys. Rev. B 77, 235424 (2008).CrossRefGoogle Scholar
French, R.H.: Electronic band structure of Al2O3, with comparison to AlON and AlN. J. Amer. Ceram. Soc. 73, 477 (1990).CrossRefGoogle Scholar
Bersch, E., Rangan, S., Bartynski, R.A., Garfunkel, E., and Vescovo, E.: Band offsets of ultrathin high-k oxide films with Si. Phys. Rev. B 78, 85114 (2008).CrossRefGoogle Scholar
Lee, K.H. and Crawford, J.H. Jr.: Electron centers in single crystal Al2O3. Phys. Rev. B 15, 4065 (1977).CrossRefGoogle Scholar
Evans, B.D.: Optical transmission in undoped crystalline α-Al2O3 grown by several techniques. J. Appl. Phys. 70, 3995 (1991).CrossRefGoogle Scholar
Takeuchi, H., Ha, D., and King, T.J.: Observation of bulk HfO2 defects by spectroscopic ellipsometry. J. Vac. Sci. Technol., A 22, 1337 (2004).CrossRefGoogle Scholar
Nguyen, N.V., Davydov, A.V., Chandler-Horowitz, D., and Frank, M.M.: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87, 192903 (2005).CrossRefGoogle Scholar
Price, J., Bersuker, G., and Lysaght, P.S.: Identification of interfacial defects in high-k gate stack films by spectroscopic ellipsometry. J. Vac. Sci. Technol., B 27, 310 (2009).CrossRefGoogle Scholar
Stesmans, A. and Afanas’ev, V.V.: Si dangling-bond-defects at the interface of (100) Si with ultrathin layers of SiOx, Al2O3, and ZrO2. Appl. Phys. Lett. 80, 1957 (2002).CrossRefGoogle Scholar
Stesmans, A. and Afanas’ev, V.V.: Si dangling-bond-type defects at the interface of (100) Si with ultrathin HfO2. Appl. Phys. Lett. 82, 4074 (2003).CrossRefGoogle Scholar
Stesmans, A., Afanas’ev, V.V., Chen, F., and Campbell, S.A.: Paramagnetic NO2 centers in thin γ-irradiated HfO2 layers on (100)Si revealed by electron spin resonance. Appl. Phys. Lett. 84, 4574 (2004).CrossRefGoogle Scholar
Stesmans, A., Clemer, K., and Afanas’ev, V.V.: P-associated defects in the high-k insulators HfO2 and ZrO2 revealed by electron spin resonance. Phys. Rev. B 77, 125241 (2008).CrossRefGoogle Scholar
Draeger, B.G. and Summers, G.P.: Defects in unirradiated α-Al2O3. Phys. Rev. B 19, 1172 (1979).CrossRefGoogle Scholar
DuVarney, R.C., Garrison, A.K., Nilas, J.R., and Spaeth, M.: Electron-nuclear double resonance of the F+ center in α-alumina. Phys. Rev. B 24, 3693 (1981).CrossRefGoogle Scholar
Vilmay, M., Roy, D., Volpi, F., and Chaix, J-M.: Characterization of low-k SiOCH dielectric for 45 nm technology and link between the dominant leakage path and the breakdown localization. Microelectron. Eng. 85, 2075 (2008).CrossRefGoogle Scholar
Atkin, J.M., Shaw, T.M., Liniger, E., Laibowitz, R.B., and Heinz, T.F.: The effect of voltage bias stress on temperature-dependent conduction properties of low-k dielectrics. IEEE International Reliability Physics Symposium, Anaheim, CA (IEEE, 2012); p. BD.1.1.Google Scholar
Baklanov, M., Zhao, L., Van Besien, E., and Pantouvaki, M.: Effect of porogen residue on electrical characteristics of ultra low-k material. Microelectron. Eng. 88, 990 (2011).CrossRefGoogle Scholar
Bittel, B., Lenahan, P., and King, S.: Ultraviolet radiation effects on paramagnetic defects in low-k dielectrics for ultralarge scale integrated circuit interconnects. Appl. Phys. Lett. 97, 63506 (2010).CrossRefGoogle Scholar
Sinha, H., Antonelli, G., Jiang, G., Nishi, Y., and Shohet, J.: Effects of vacuum ultraviolet radiation on deposited and ultraviolet-cured low-k porous organosilicate glass. J. Vac. Sci. Technol., A 29, 30602 (2011).CrossRefGoogle Scholar
Ren, H., Jiang, G., Antonelli, G., Nishi, Y., and Shohet, J.: The nature of the defects generated from plasma exposure in pristine and ultraviolet-cured low-k organosilicate glass. Appl. Phys. Lett. 98, 252902 (2011).CrossRefGoogle Scholar
Nichols, M., Sinha, H., Wiltbank, C., Antonelli, G., Nishi, Y., and Shohet, J.: Time-dependent dielectric breakdown of plasma-exposed porous organosilicate glass. Appl. Phys. Lett. 100, 112905 (2012).CrossRefGoogle Scholar
Sinha, H., Ren, H., Nichols, M.T., Lauer, J.L., Tomoyasu, M., Russell, N.M., Jiang, G., Antonelli, G.A., Fuller, N.C., Engelmann, S.U., Lin, Q., Ryan, V., Nishi, Y., and Shohet, J.L.: The effects of vacuum ultraviolet radiation on low-k dielectric films. J. Appl. Phys. 112, 111101 (2012).CrossRefGoogle Scholar
Miyazaki, S.: Photoemission study of energy-band alignments and gap state density distributions for high-k gate dielectrics. J. Vac. Sci. Technol., B 19, 2212 (2001).CrossRefGoogle Scholar
Ikarashi, N., Miyamura, M., Masuzaki, K., and Tatsumi, T.: Electron energy-loss spectroscopy analysis of the electronic structure of nitrided Hf silicate films. Appl. Phys. Lett. 84, 2672 (2004).CrossRefGoogle Scholar
Kamimuta, Y., Koike, M., Ino, T., Suzuki, M., Koyama, M., Tsunashima, Y., and Nishiyama, A.: Determination of band alignment of hafnium silicon oxynitride/silicon (HfSiON/Si) structures using electron spectroscopy. Jpn. J. Appl. Phys. 44, 1301 (2005).CrossRefGoogle Scholar
Koike, M., Ino, T., Kamimuta, Y., Koyama, M., Kamata, Y., Suzuki, M., Mitani, Y., and Nishiyama, A.: Dielectric properties of noncrystalline HfSiON. Phys. Rev. B 73, 125123 (2006).CrossRefGoogle Scholar
Jin, H., Oh, S.K., Kang, H.J., and Cho, M.H.: Band gap and band offsets for ultrathin (HfO2)x(SiO2)1-x dielectric films on Si (100). Appl. Phys. Lett. 89, 122901 (2006).CrossRefGoogle Scholar
Yim, C.J., Ko, D.H., Jang, M.H., Chung, K.B., Cho, M.H., and Jeon, H.T.: Change in band alignment of HfO2 films with annealing treatments. Appl. Phys. Lett. 92, 12922 (2008).CrossRefGoogle Scholar
Swaminathan, S., Sun, Y., Pianetta, P., and McIntyre, P.C.: Ultrathin ALD-Al2O3 layers for Ge (001) gate stacks: Local composition evolution and dielectric properties. J. Appl. Phys. 110, 94105 (2011).CrossRefGoogle Scholar
King, S., French, M., Jaehnig, M., Kuhn, M., Boyanov, B., and French, B.: X-ray photoelectron spectroscopy measurement of the Schottky barrier at the SiC(N)/Cu interface. J. Vac. Sci. Technol., B 29, 51207 (2011).CrossRefGoogle Scholar
King, S., French, M., Jaehnig, M., Kunh, M., and French, B.: X-ray photoelectron spectroscopy investigation of the Schottky barrier at low-k a-SiO(C):H/Cu interfaces. Appl. Phys. Lett. 99, 202903 (2011).CrossRefGoogle Scholar
King, S.W., French, M., Bielefeld, J., Jaehnig, M., Kuhn, M., Xu, G., and French, B.: Valence band offset at the amorphous hydrogenated boron nitride silicon (100) interface. Appl. Phys. Lett. 101, 42903 (2012).CrossRefGoogle Scholar
King, S.W., French, B., and Mays, E.: Detection of defect states in low-k dielectrics using reflection electron energy loss spectroscopy. J. Appl. Phys. 113, 44109 (2013).CrossRefGoogle Scholar
Bart, F., Gautier, M., Duraud, J., and Henriot, M.: (01-10) α-quartz: A LEED, XANES and ELS study. Surf. Sci. 274, 317 (1992).CrossRefGoogle Scholar
Bart, F., Gautier, M., Jollet, F., and Duraud, J.: Electronic structure of the (0001) and (10-10) quartz surfaces and of their defects as observed by reflection electron energy loss spectroscopy (REELS). Surf. Sci. 306, 342 (1994).CrossRefGoogle Scholar
Poveda, P. and Glachant, A.: Energy gap-determination of a carbon contaminated thermal silicon oxide thin film using reflection electron energy loss spectroscopy. J. Non-Cryst. Solids 216, 83 (1997).CrossRefGoogle Scholar
Poveda, P. and Glachant, A.: Low energy electron-beam-enhanced formation of ultrathin insulating silicon oxynitride layers on Si(100) at moderate temperatures: In situ determination of the band gap energy using electron energy loss spectroscopy. Surf. Sci. 323, 258 (1995).CrossRefGoogle Scholar
Morant, C., Fernandez, A., Gonzales-Elipe, A.R., Soriano, L., Stampfl, A., Bradshaw, A.M., and Sanz, J.M.: Electronic structure of stoichiometric Ar+-bombarded ZrO2 determined by resonant photoemission. Phys. Rev. B 52, 11711 (1995).CrossRefGoogle ScholarPubMed
Schildbach, M.A. and Hamza, A.V.: Sapphire (11-20) surface: Structure and laser-induced desorption of aluminum. Phys. Rev. B 45, 6197 (1992).CrossRefGoogle Scholar
Olivier, J. and Poirier, R.: Electronic structure of Al2O3 from electron energy loss spectroscopy. Surf. Sci. 105, 347 (1981).CrossRefGoogle Scholar
Gautier, M., Duraud, J.P., Pham Van, L., and Guittet, M.J.: Modifications of α-Al2O3 (0001) surfaces induced by thermal treatments or ion bombardment. Surf. Sci. 250, 71 (1991).CrossRefGoogle Scholar
Gignac, W.J., Williams, R., and Kowalczyk, S.: Valence-and conduction-band structure of the sapphire (1-102) surface. Phys. Rev. B 32, 1237 (1985).CrossRefGoogle Scholar
Wu, M-C., Truong, C.M., and Goodman, D.W.: Electron-energy-loss-spectroscopy studies of thermally generated defects in pure and lithium-doped MgO(100) films on Mo(100). Phys. Rev. B 46, 12688 (1992).CrossRefGoogle Scholar
King, S. and Gradner, J.: Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system. Microelectron. Reliab. 49, 721 (2009).CrossRefGoogle Scholar
King, S., Jacob, D., Vanleuven, D., Colvin, B., Kelly, J., French, M., Bielefeld, J., Dutta, D., Liu, M., and Gidley, D.: Film property requirements for hermetic low-k a-SiOxCyNz:H dielectric barriers. ECS J. Solid State Sci. Technol. 1, N115 (2012).CrossRefGoogle Scholar
King, S., Chu, R., Xu, G., and Huening, J.: Intrinsic stress effect on fracture toughness of plasma enhanced chemical vapor deposited SiNx:H films. Thin Solid Films 518, 4898 (2010).CrossRefGoogle Scholar
Andideh, E., Lerner, M., Palmrose, G., El-Mansy, S., Scherban, T., Xu, G., and Blaine, J.: Compositional effects on electrical and mechanical properties in carbon-doped oxide dielectric films: Application of Fourier-transform infrared spectroscopy. J. Vac. Sci. Technol., B 22, 196 (2004).CrossRefGoogle Scholar
Jousseaume, V., Zenasni, A., Favennec, L., Gerbaud, G., Bardet, M., Simon, J.P., and Humbert, A.: Comparison between e-beam and ultraviolet curing to perform porous a-SiOC: H. J. Electrochem. Soc. 154, G103 (2007).CrossRefGoogle Scholar
Bailey, S., Mays, E., Michalak, D.J., Chebiam, R., King, S., and Sooryakumar, R.: Mechanical properties of high porosity low-k dielectric nano-films determined by Brillouin light scattering. J. Phys. D: Appl. Phys. 46, 45308 (2013).CrossRefGoogle Scholar
Miikkulainen, V., Leskela, M., Ritala, M., and Puurunen, R.: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 21301 (2013).CrossRefGoogle Scholar
Kim, H., Lee, H.B.R., and Maeng, W.J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563 (2009).CrossRefGoogle Scholar
Powell, C.J. and Jablonski, A.: Nist Electron Effective-Attenuation-Length Database, Version 1.3 (SRD 82), (NIST, Gaithersburg, MD, 2011).Google Scholar
Haynes, W.M., ed.: Crc Handbook of Physics and Chemistry, 93rd ed., Haynes, W.M. (CRC Press, Boca Raton, FL, 2012).Google Scholar
Zangwill, A.: Physics at Surfaces (Cambridge University Press, New York, 1988).CrossRefGoogle Scholar
Jablonski, A. and Powell, C.J.: The electron attenuation length revisited. Surf. Sci. Rep. 47, 33 (2002).CrossRefGoogle Scholar
Pantano, C. and Madey, T.: Electron beam damage in Auger electron spectroscopy. Appl. Surf. Sci. 7, 115 (1981).CrossRefGoogle Scholar
Zallen, R.: The Physics of Amorphous Solids (Wiley-Interscience, New York, 1983).CrossRefGoogle Scholar
Mok, T. and O’Leary, S.: The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on film thickness: αI experimental limitations and the impact of curvature in the Tauc and Cody plots. J. Appl. Phys. 102, 113525 (2007).CrossRefGoogle Scholar
Weinberg, Z., Rubloff, G., and Bassous, E.: Transmission, photoconductivity, and the experimental band gap of thermally gown SiO2 films. Phys. Rev. B 19, 3107 (1979)CrossRefGoogle Scholar
DiStefano, T. and Eastman, D.: The band edge of amorphous SiO2 by photoinjection and photoconductance measurements. Solid State Commun. 9, 2259 (1971).CrossRefGoogle Scholar
O’Reilly, E. and Robertson, J.: Theory of defects in vitreous silicon dioxide. Phys. Rev. B 27, 3780 (1983).CrossRefGoogle Scholar
Rudenko, A., Keil, F., Katsnelson, M., and Lichtenstein, A.: Interfacial interactions between local defects in amorphous SiO2 and supported graphene. Phys. Rev. B 84, 85438 (2011).CrossRefGoogle Scholar
Chang, E.K., Rohlfing, M., and Louie, S.G.: Excitons and optical properties of α-quartz. Phys. Rev. Lett. 85, 2613 (2000).CrossRefGoogle ScholarPubMed
Skuja, L., Kajihara, K., Ikuta, Y., Hirano, M., and Hosono, H.: Urbach absorption edge of silica: Reduction of glassy disorder by fluorine doping. J. Non-Cryst. Solids 345346, 328 (2004).CrossRefGoogle Scholar
Saito, K. and Ikushima, A.J.: Absorption edge in silica glass. Phys. Rev. B 62, 8584 (2000).CrossRefGoogle Scholar
Cheng, S.C., Schiefelbein, S.L., Moore, L.A., Pierson-Stull, M., Smith, C.M., and Sen, S.: Use of EELS to study the absorption edge of fused silica. J. Non-Cryst. Solids 352, 3140 (2006).CrossRefGoogle Scholar
Sadigh, B., Erhart, P., Aberg, D., Trave, A., Schwegler, E., and Bude, J.: First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass. Phys. Rev. Lett. 106, 027401 (2011).CrossRefGoogle ScholarPubMed
Dunstan, D.J.: Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C: Solid State Phys. 30, L419 (1982).CrossRefGoogle Scholar
Drabold, D.A., Li, Y., Cai, B., and Zhang, M.: Urbach tails of amorphous silicon. Phys. Rev. B 83, 045201 (2011).CrossRefGoogle Scholar
Vainshtein, I.A., Zatsepin, A.F., Kortov, V.S., and Yu Shchapova, V.: The urbach rule for the PbO–SiO2 Glasses. Fizika Tverdogo Tela 42, 224 (2000).Google Scholar
Pan, Y., Inam, F., Zhang, M., and Drabold, D.A.: Atomistic origin of Urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008).CrossRefGoogle ScholarPubMed
Alkauskas, A., Broqvist, P., and Pasquarello, A.: Alignment of defect energy levels at SiSiO2 interface from hybrid density functional calculations. AIP Conference Proceedings, Vol. 1199 2010; p. 79.Google Scholar
Tamaoki, M., Nishiki, K., Shimazaki, A., Sasaki, Y., and Yanagi, S.: The effect of airborne contaminants in the cleanroom for ULSI manufacturing process. IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, Cambridge, MA (IEEE, 1995); p. 322.CrossRefGoogle Scholar
Zammit, U., Gasparrini, F., Marinelli, M., Pizzoferrato, R., Agostini, A., and Mercuri, F.: Ion dose effect in subgap absorption spectra of defects in ion implanted GaAs and Si. J. Appl. Phys. 70, 7060 (1991).CrossRefGoogle Scholar
Sundari, S.T.: Optical absorption in Ar+ irradiated silicon studied through spectroscopic ellipsometry. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 157 (2004).CrossRefGoogle Scholar
Lopinski, G.P. and Lannin, J.S.: High resolution electron energy loss spectroscopy: A new probe of subgap absorption in amorphous solids. Appl. Phys. Lett. 69, 2400 (1996).CrossRefGoogle Scholar
Worsley, M., Bent, S., Fuller, N., Tai, T., Doyle, J., Rothwell, M., and Dalton, T.: Effect of radical species density and ion bombardment during ashing of extreme ultralow-k interlevel dielectric materials. J. Appl. Phys. 101, 13305 (2007).CrossRefGoogle Scholar
Bao, J., Shi, H., Huang, H., Ho, P., Goodner, M., Moinpour, M., and Kloster, G.: Mechanistic study of plasma damage of low k dielectric surfaces. J. Vac. Sci. Technol., B 26, 219 (2008).CrossRefGoogle Scholar
Yamamoto, H., Asano, K., Ishikawa, K., Sekine, M., Hayashi, H., Sakai, I., Ohiwa, T., Takeda, K., Kondo, H., and Hori, M.: Chemical bond modification in porous SiOCH films by H2 and H2/N2 plasmas investigated by in situ infrared reflection absorption spectroscopy. J. Appl. Phys. 110, 123301 (2011).CrossRefGoogle Scholar
Tahir, D., Kwon, H.L., Shin, H.C., Oh, S.K., Kang, H.J., Heo, S., Chung, J.G., Lee, J.C., and Tougaard, S.: Electronic and optical properties of Al2O3/SiO2 thin films grown on Si substrate. J. Phys. D: Appl. Phys. 43, 255301 (2010).CrossRefGoogle Scholar
Degraeve, R., Cho, M., Govoreanu, B., Kaczer, B., Zahid, M.B., Van Houdt, J., Jurczak, M., and Groeseneken, G.: Trap spectroscopy by charge injection and sensing (TSCIS): A quantitative electrical technique for studying defects in dielectric stacks. IEEE Electron Devices Meeting, 2008. DOI: 10.1109/IEDM.2008.4796812Google Scholar
Huang, M.L., Chang, Y.C., Chang, Y.H., Lin, T.D., Kwo, J., and Hong, M.: Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1−xAs. Appl. Phys. Lett. 94, 052106 (2009).CrossRefGoogle Scholar
Miyazaki, S.: Characterization of high-k gate dielectric/silicon interfaces. Appl. Surf. Sci. 190, 66 (2002).CrossRefGoogle Scholar
Geppert, I., Eizenberg, M., Ali, A., and Datta, S.: Band offsets determination and interfacial chemical properties of the Al2O3/GaSb system. Appl. Phys. Lett. 97, 162109 (2010).CrossRefGoogle Scholar
Henderson, M.A., Epling, W.S., Peden, C.H.F., and Perkins, C.L.: Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J. Phys. Chem. B 107, 534 (2003).CrossRefGoogle Scholar
Di Valentin, C. and Pacchioni, G.: Electronic structure of defect states in hydroxylated and reduced rutile TiO2110Surfaces. Phys. Rev. Lett. 97, 166803 (2006).CrossRefGoogle Scholar
Landmann, M., Rauls, E., and Schmidt, W.G.: The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 24, 195503 (2012).CrossRefGoogle ScholarPubMed
French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N., and Ching, W.Y.: Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 49, 5133 (1994).CrossRefGoogle ScholarPubMed
Jin, H., Oh, S.K., Kang, H.J., and Tougaard, S.: Electronic properties of ultrathin HfO2, Al2O3, and Hf–Al–O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra. J. Appl. Phys. 100, 083713 (2006).CrossRefGoogle Scholar
Jang, M.H., Jeong, K.S., Chung, K.B., Lee, J.W., Lee, M.H., and Cho, M.H.: Effect of nitrogen incorporation and oxygen vacancy on electronic structure and the absence of a gap state in HfSiO films. Surf. Sci. 606, L64 (2012).CrossRefGoogle Scholar
Xiong, K. and Robertson, J.: Point defects in HfO2 high K gate oxide. Microelectronic Eng. 80, 408 (2005).CrossRefGoogle Scholar
Foster, A.S., Lopez Gejo, F., Shluger, A.L., and Nieminen, R.M.: Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002).CrossRefGoogle Scholar