Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T12:37:21.993Z Has data issue: false hasContentIssue false

Development and Evolution of Texture in Mg–Zr Alloy Deposited by Physical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

G. Garcés
Affiliation:
Department of Physical Metallurgy, National Center for Metallurgical Research, CENIM, CSIC, Av. Gregorio del Amo, 8, 28040 Madrid, Spain
P. Adeva
Affiliation:
Department of Physical Metallurgy, National Center for Metallurgical Research, CENIM, CSIC, Av. Gregorio del Amo, 8, 28040 Madrid, Spain
Get access

Abstract

The development and evolution of texture in a Mg–10.6%wt Zr deposit obtained by physical vapor deposition was studied. The deposit exhibits a microstructure characterized by elongated grains with the [0001] direction parallel to the deposit growth direction. The volume fraction of the basal plane component increases throughout the thickness from 45% at the collector side up to around 70%. The minimization of interfacial energy of (0001) planes induces the initial texture at the earliest stage of the deposit formation. Furthermore, the increase in the volume fraction of the (0001) component during deposit growth is provoked by texture competition, which results in the development of grains with the [0001] direction parallel to the deposit growth direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, K.R., Bray, D.J., Howard, G.D., and Gardiner, R.W., Mater. Sci. Tech. 12, 937 (1996).CrossRefGoogle Scholar
Baldwin, K.R., Dodd, S.B., and Gardiner, R.W., Proc. Third Int. Magnesium Conf., edited by Mordike, B.L. and Kainer, K.U. (The Institute of Materials, Frankfurt, Germany, 1996), p. 727.Google Scholar
Dodd, S.B., Morris, S., and Gardiner, R.W., Proc. Magnesium Alloys and Their Applications, 375 (1998).Google Scholar
Movchan, B.A. and Demchishin, A.V., Phys. Metal. Metallogr. 28, 83 (1969).Google Scholar
Thornton, J.A., Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
Drift, A. Van der, Philips Res. Rep. 22, 267 (1967).Google Scholar
Grovenor, C.R.M., Hertzell, H.T.G., and Smith, D.A., Acta Metall. 32, 773 (1984).CrossRefGoogle Scholar
Thompson, C.V., Floro, J., and Smith, H.I., J. Appl. Phys. 67, 4099 (1990).CrossRefGoogle Scholar
Ekinci, K.L. and Valles, J.M., Acta Mater. 46, 4549 (1998).CrossRefGoogle Scholar
Thompson, C.V., J. Mater. Res. 14, 3164 (1999).CrossRefGoogle Scholar
Floro, J.A., Thompson, C.V., Carel, R., and Bristowe, P.D., J. Mater. Res. 9, 2411 (1994).CrossRefGoogle Scholar
Quaeyhaegens, C., Knuyt, G., D’Haen, J., and Stals, L.M., Thin Solid Films 258, 170 (1995).Google Scholar
Zhou, X.W. and Wadley, H.N.G., Acta Mater. 47, 1063 (1999).CrossRefGoogle Scholar
Tomov, I., Adamik, M., and Barna, P.B., Thin Solid Films 371, 17 (2000).CrossRefGoogle Scholar
Lee, D.N. and Hur, K., Scripta Mater. 40, 1333 (1999).CrossRefGoogle Scholar
Greise, J., Mu¨ller, D., Mu¨llner, P., Thompson, C.V., and Arzt, E., Scripta Mater. 41, 709 (1999).CrossRefGoogle Scholar
Nyung, D.N. and Hur, K., Scripta Mater. 40, 1333 (1999).Google Scholar
Shen, Y.G., Mai, Y.W., McKenzie, D.R., Zhang, Q.C., McFall, W.D., and McBride, W.E., J. Appl. Phys. 88, 1380 (2000).CrossRefGoogle Scholar
Slaughter, J.M., Schulze, D.W., Hills, C.R., Mirone, A., Watts, R.N., Tarrio, C., Lucatorno, T.B., Krumrey, M., Mueller, P., and Falco, C.M., J. Appl. Phys. 76, 2144 (1994).CrossRefGoogle Scholar
Scofield, J.H., Duda, A., Albin, D., Ballard, B.L., and Predecki, P.K., Thin Solid Films 260, 26 (1995).CrossRefGoogle Scholar
G. Garce´s, Cristina, M.C., Torralba, M., and Adeva, P., J. Alloy. Compd. 309, 229 (2000).Google Scholar
Nix, W.D., Metall. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
Adamik, M., Barna, P.B., and Tomov, I., Thin Solid Films 317, 64 (1998).CrossRefGoogle Scholar
Barna, P.B. and Adamik, M., Thin Solid Films 317, 27 (1998).CrossRefGoogle Scholar
Knuyt, G., Quaeyhaegens, C., D’Haen, J., and Stals, L.M., Thin Solid Films 258, 159 (1995).CrossRefGoogle Scholar
Dodd, S.B. and Gardiner, R.W., Proceedings of the Third International Magnesium Conference, edited by Lorimer, G.W. (The Institute of Metals, London, UK, 1996), p. 22.Google Scholar
Bunge, H.J., Texture Analysis in Materials Science (Butterworths, 1982), p. 22.Google Scholar
Anderson, A.J., Thompson, R.B., and Cook, C.S., Metall. Mater. Trans. A 30A, 1981 (1999).CrossRefGoogle Scholar
Borrego, A., Cristina, M.C., Ibanez, J., and G. Gonzalez-Doncel, Proceedings of the Composite Materials, edited by Güemes, J.A. and Navarro, C. (AEMAC, Madrid, Spain, 1997), p. 456.Google Scholar
Knorr, D.B., Mater. Scien. Forum 157–162, 1327 (1994).CrossRefGoogle Scholar
Sundquist, B.E., Acta Metall. 12, 67 (1964).CrossRefGoogle Scholar
Paritosh, Srolovitz, D.J., Battaile, C.C., Li, X., and Butler, J.E., Acta Mater. 47, 2269 (1999).Google Scholar