Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T02:22:25.816Z Has data issue: false hasContentIssue false

Diffusion of 57Co in amorphous Fe–RE (RE = Dy, Tb, and Ce) and Fe–Si–B alloys

Published online by Cambridge University Press:  03 March 2011

Kazumasa Yamada
Affiliation:
Department of Materials Science, Faculty of Engineering, Tohoku University, Aoba, Sendai 980, Japan
Yoshiaki Iijima
Affiliation:
Department of Materials Science, Faculty of Engineering, Tohoku University, Aoba, Sendai 980, Japan
Kazuaki Fukamichi
Affiliation:
Department of Materials Science, Faculty of Engineering, Tohoku University, Aoba, Sendai 980, Japan
Get access

Abstract

Tracer diffusion of 57Co in amorphous Fe100−xDyx (x = 20–40), Fe75Tb25, Fe67Ce33, and Fe80Si6B14 alloys prepared by dc sputtering has been studied at temperatures of 523 and 573 K. In the Fe–Dy alloys the diffusion coefficient of 57Co shows a maximum at 33 at.% Dy. The magnitude of the diffusion coefficient of 57Co in Fe75Tb25 is nearly equal to that in Fe75Dy25, while those in Fe67Ce33 and Fe80Si6B14 are about one order of magnitude less than the values in Fe67Dy33 and Fe80Dy20. This suggests that the atomic size of the diffusant and the density of the matrix are dominant in the diffusion. Temperature dependence of the diffusion coefficient D of 57Co in the amorphous Fe75Dy25 alloy has been determined in the range from 493–673 K. It shows a linear Arrhenius relationship expressed by D = 5.7 × 10−2 exp(−199 kJ mol−1/RT) m2 s−1. The magnitudes of the pre-exponential factor and the activation energy suggest that the cobalt tracer atoms in the amorphous Fe75Dy25 alloy diffuse by an interstitial-like mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mehrer, H. and Dörner, W., Defects and Diffusion Forum 66–69, 189 (1989).Google Scholar
2Cantor, B., Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Amsterdam, 1985), p. 595.Google Scholar
3Horváth, J. and Mehrer, H., Cryst. Lattice Defects Amorphous Mater. 13, 1 (1986).Google Scholar
4Horváth, J., Diffusion in Solid Metals and Alloys, edited by Mehrer, H., Landolt–Bbörnstein New Series, Group III (Springer, Berlin, 1990), Vol. 26, p. 437.Google Scholar
5Horváth, J., Ott, J., Pfahler, K., and Ulfert, W., Mater. Sci. Eng. 97, 409 (1988).CrossRefGoogle Scholar
6Kronmuller, H. and Frank, W., Radiat. Eff. and Defects in Solids 108, 81 (1989).Google Scholar
7Kronmüller, H., Frank, W., and Hömer, A., Mater. Sci. Eng. A 133, 410 (1991).Google Scholar
8Hong, M., Gyorgy, E. M., van Dover, R. B., Nakahara, S., Bacon, D. D., and Gallagher, P. K., J. Appl. Phys. 59, 551 (1986).CrossRefGoogle Scholar
9Lee, J-W., Shieh, H-P. D., Kryder, M. H., and Laughlin, D. E., J. Appl. Phys. 63, 3624 (1988).CrossRefGoogle Scholar
10Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1972), p. 135.Google Scholar
11Dörner, W. and Mehrer, H., Phys. Rev. B 44, 101 (1991).CrossRefGoogle Scholar
12Santos, E. and Dyment, F., Plating 60, 821 (1973).Google Scholar
13lijima, Y., Yamada, K., Katoh, H., Kim, J-K., and Hirano, K., Proc. 13th Symp. Ion Sources and Ion-Assisted Technol., edited by Takagi, T. (Ionics, Tokyo, 1990), p. 179.Google Scholar
14Fukamichi, K., Satoh, Y., and Komatsu, H., IEEE Trans. Magn. 23, 2548 (1987).CrossRefGoogle Scholar
15Hoshino, K.. Averback, R. S., Hahn, H., and Rothman, S. J., J. Mater. Res. 3, 55 (1988).CrossRefGoogle Scholar
16Dörner, W., Mehrer, H., Pokela, P. J., Kolawa, E., and Nicolet, M-A., Mater. Sci. Eng. B 10, 165 (1991).Google Scholar
17Fujimori, H. and Kazama, N., Sci. Rep. RITU 27A, 177 (1979).Google Scholar
18Birchenall, C. E., Atom Movements (ASM, Metals Park, OH, 1951), p. 112.Google Scholar
19Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T. B. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 165.Google Scholar
20Ulfert, W., Horváth, J., and Frank, W., Cryst. Lattice Defects Amorphous Mater. 18, 519 (1989).Google Scholar
21Pfahler, K., Horváth, J., and Frank, W., Cryst. Lattice Defects Amorphous Mater. 17, 249 (1987).Google Scholar
22Tyagi, A. K., Macht, M-P., and Naundorf, V., Acta Metall. Mater. 39, 609 (1991).CrossRefGoogle Scholar
23Höfler, H. J., Averback, R. S., Rummel, G., and Mehrer, H., Philos. Mag. Lett. 66, 301 (1992).CrossRefGoogle Scholar
24Frank, W., Horváth, J., and Kronmüller, H., Mater. Sci. Eng. 97, 415 (1988).CrossRefGoogle Scholar
25Faupel, F., Hüppe, P. W., and Rätzke, K., Phys. Rev. Lett. 65, 1219 (1990).Google Scholar
26Rätzke, K. and Faupel, F., Phys. Rev. B 45, 7459 (1992).Google Scholar
27Hüppe, R. W. and Faupel, F., Phys. Rev. B 46, 120 (1992).CrossRefGoogle Scholar
28Rätzke, K., Hüppe, P. W., and Faupel, F., Phys. Rev. Lett. 68, 2347 (1992).Google Scholar