Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T02:23:27.874Z Has data issue: false hasContentIssue false

Doping iodine in CdS for pure hexagonal phase, narrower band gap, and enhanced photocatalytic activity

Published online by Cambridge University Press:  23 February 2011

Zhihui Ai
Affiliation:
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
Man Wang
Affiliation:
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
Zhi Zheng*
Affiliation:
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000, People’s Republic of China
Lizhi Zhang*
Affiliation:
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: zhanglz@mail.ccnu.edu.cn
Get access

Abstract

Iodine-doped CdS (I-CdS) with controllable morphologies, pure hexagonal phase, and enhanced photocatalytic activity was synthesized via a mild hydrothermal process with polyvinylpyrrolidone-iodine (PVP-I) acting as the template-directing reagent and iodine source. The morphologies of the as-prepared samples could be adjusted from irregular cone-shaped particles to uneven microspheres, further to smooth microspheres, while the crystal phases were also transformed from mixed cubic and hexagonal phases to pure hexagonal phase upon increasing the molar ratio of PVP-I to Cd2+ from 0 to 2. The iodine doping could result in red shift of the absorption edges and band gap narrowing of the I-CdS samples. Importantly, a critical point of 0.5 of molar ratio of PVP-I to Cd2+ for iodine doping was found to be necessary for obtaining a pure hexagonal phase that facilitates the improving of photocatalytic activity on the degradation of Rhodamine B in aqueous solution under visible light irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kamat, P.V.: Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007).CrossRefGoogle Scholar
2.Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).CrossRefGoogle ScholarPubMed
3.Colovin, V.L., Schlamp, M.C., and Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994).CrossRefGoogle Scholar
4.Coe, S., Woo, W.K., Bawendi, M., and Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002).Google Scholar
5.Duan, X.F., Huang, Y., Agarwal, R., and Lieber, C.M.: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).CrossRefGoogle ScholarPubMed
6.Peng, T.Y., Zhao, D., Dai, K., Shi, W., and Hirao, K.: Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B 109, 4947 (2005).Google Scholar
7.Pore, V., Ritala, M., Leskela, M., Areva, S., Jarn, M., and Jarnstrom, J.: H2S modified atomic layer deposition process for photocatalytic TiO2 thin films. J. Mater. Chem. 17, 1361 (2007).Google Scholar
8.Kubacka, A., Colon, G., and Fernandez-Garcia, M.: Cationic (V, Mo, Nb, W) doping of TiO2-anatase: A real alternative for visible light-driven photocatalysts. Catal. Today 143, 286 (2009).CrossRefGoogle Scholar
9.Jang, J.S., Joshi, U.A., and Lee, J.S.: Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 111, 13280 (2007).CrossRefGoogle Scholar
10.Jing, D.W. and Guo, L.J.: A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. J. Phys. Chem. B 110, 11139 (2006).CrossRefGoogle ScholarPubMed
11.Yao, W.T., Yu, S.H., Liu, S., Chen, J.J.P., Liu, X.M., and Li, F.Q.: Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J. Phys. Chem. B 110, 11704 (2006).CrossRefGoogle Scholar
12.Peng, X.G., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
13.Empedocles, S.A., Neuhauser, R., Shimizu, K., and Bawendi, M.G.: Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 (1999).3.0.CO;2-2>CrossRefGoogle Scholar
14.Yu, W.W., Qu, L.H., Guo, W.Z., and Peng, X.G.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
15.Cheng, Y., Wang, Y.S., Bao, F., and Chen, D.Q.: Shape control of monodisperse CdS nanocrystals: Hexagon and pyramid. J. Phys. Chem. B 110, 9448 (2006).CrossRefGoogle ScholarPubMed
16.Gao, F., Lu, Q.Y., Xie, S.H.D., and Zhao, Y.: A simple route for the synthesis of multi-armed CdS nanorod-based materials. Adv. Mater. 14, 1537 (2002).3.0.CO;2-Q>CrossRefGoogle Scholar
17.Shen, G.Z. and Lee, C.: CdS multipod-based structures through a thermal evaporation process. Cryst. Growth Des. 5, 1085 (2005).CrossRefGoogle Scholar
18.Zhao, P.T. and Huang, K.X.: Multipod-based structures through a thermal evaporation process. Cryst. Growth Des. 8, 717 (2008).CrossRefGoogle Scholar
19.Zhang, B.H., Jian, J.K., Zheng, Y.F., Sun, Y.F., Chen, Y.H., and Cui, L.: Low temperature hydrothermal synthesis of CdS submicro- and microspheres self-assembled from nanoparticles. Mater. Lett. 62, 1827 (2008).CrossRefGoogle Scholar
20.Du, T. and Ilegbusi, O.J.: Synthesis and morphological characterization on PVP/ZnO nanohybrid films. J. Mater. Sci. 39, 6105 (2004).CrossRefGoogle Scholar
21.Wu, Y.D., Wang, L.S., Xiao, M.W., and Huang, X.J.: A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J. Non-Cryst. Solids 354, 2993 (2008).CrossRefGoogle Scholar
22.Jing, C.B., Xu, X.G., Zhang, X.L., Liu, Z.B., and Chu, J.H.: In situ synthesis and third-order nonlinear optical properties of CdS/PVP nanocomposite films. J. Phys. D: Appl. Phys. 42, 075402 (2009).CrossRefGoogle Scholar
23.Wang, Q.Q., Zhao, G.L., and Han, G.R.: Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method. Mater. Lett. 59, 2625 (2005).Google Scholar
24.Li, G.C., Jiang, L., Peng, H.R., and Zhang, B.: Self-assembled cadmium sulfide microspheres from nanorods and their optical properties. Mater. Lett. 62, 1881 (2008).CrossRefGoogle Scholar
25.Su, W.Y., Zhang, Y.F., Li, Z.H., Wu, L., Wang, X.X., Li, J.Q., and Fu, X.Z.: Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24, 3422 (2008).CrossRefGoogle ScholarPubMed
26.Liu, G., Sun, C.H., Yan, X.X., Cheng, L.N., Chen, Z.G., Wang, X.W., Wang, L.Z., Smith, S.C., Lu, G.Q., and Cheng, H.M.: Iodine-doped anatase TiO2 photocatalyst with ultra-long visible light response: Correlation between geometric/electronic structures and mechanisms. J. Mater. Chem. 19, 2822 (2009).Google Scholar
27.Xiong, Y.S., Zhang, J., Huang, F., Ren, G.Q., Liu, W.Z., Li, D.S., Wang, C., and Lin, Z.: Growth and phase-transformation mechanisms of nanocrystalline CdS in Na2S solution. J. Phys. Chem. C 112, 9229 (2008).CrossRefGoogle Scholar
28.Bao, N.Z., Shen, J.M., Takata, T., Domen, K., Gupta, A., Yanagisawa, K., and Crimes, C.A.: Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. J. Phys. Chem. C 111, 17527 (2007).CrossRefGoogle Scholar
29.Cao, H.Q., Wang, G.Z., and Zhang, S.C.: Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem. 45, 5103 (2006).Google Scholar
30.Chu, M.Q. and Liu, L.: Synthesis of CdS nanocrystals controlled by polyvinyl pyrrolidine matrix at room temperature. Mater. Technol. 20, 153 (2005).CrossRefGoogle Scholar
31.Wang, M., Ai, Z.H., and Zhang, L.Z.: Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J. Phys. Chem. C 112, 13163 (2008).CrossRefGoogle Scholar
32.Ryu, S.Y., Balcerski, W., Lee, T.K., and Hoffmann, M.R.: Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J. Phys. Chem. C 111, 18195 (2007).Google Scholar
33.Kale, B.B., Baeg, J.O., Apte, S.K., Sonawane, R.S., Naik, S.D., and Patil, K.R.: Confinement of nano CdS in designated glass: A novel functionality of quantum dot-glass nanosystems in solar hydrogen production. J. Mater. Chem. 17, 4297 (2007).CrossRefGoogle Scholar
34.Grzelczak, M., Sánchez-Iglesias, A., Rodríguez-González, B., Alvarez-Puebla, R., Pérez-Juste, J., and Liz-Marzán, L.M.: Influence of iodide ions on the growth of gold nanorods: Tuning tip curvature and surface plasmon resonance. Adv. Funct. Mater. 18, 1 (2008).CrossRefGoogle Scholar
35.Li, X.H., Li, H.B., Li, G.D., and Chen, J.S.: Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructure. Inorg. Chem. 48, 3132 (2009).CrossRefGoogle Scholar
36.Xiang, G.L., Zhuang, J., and Wang, X.: Morphology-controlled synthesis of inorganic nanocrystals via surface reconstruction of nuclei. Inorg. Chem. 48, 10222 (2009).CrossRefGoogle ScholarPubMed
37.Kossel, W., Nachr, G. and Wiss, G.: Zur Theorie des Kristallwachstums. Math.-Phys. Kl. 135 (1927).Google Scholar
38.Hartman, P. and Perdok, W.G.: On the relations between structure and morphology of crystals: III. Acta Crystallogr. 8, 525 (1955).CrossRefGoogle Scholar
39.He, J.F., Liu, Q.H., Sun, Z.H., Yan, W.S., Zhang, G.B., Qi, Z.M., Xu, P.S., Wu, Z.Y., and Wei, S.Q.: High photocatalytic activity of rutile; TiO2 induced by iodine doping. J. Phys. Chem. C 114, 6035 (2010).CrossRefGoogle Scholar
40.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
41.Zhang, X., Zhang, L.Z., Xie, T.F., and Wang, D.J.: Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371 (2009).CrossRefGoogle Scholar
42.Ohtani, B., Ogawa, Y., and Nishimoto, S.I.: Mathematical modeling of free-radical polymerization fronts. J. Phys. Chem. B 101, 3746 (1997).CrossRefGoogle Scholar