Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:42:36.319Z Has data issue: false hasContentIssue false

Ductile TiAl alloy with a Widmanstätten lamellar structure formed by rapid heating

Published online by Cambridge University Press:  31 January 2011

J.P. Cui
Affiliation:
Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
M.L. Sui*
Affiliation:
Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.Y. Cui
Affiliation:
Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
D.X. Li
Affiliation:
Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: mlsui@imr.ac.cn
Get access

Abstract

Instead of conventional grain-refinement treatments for improving the ductility of fully lamellar TiAl alloys, multiorientational, lamellar, subcolony refinement with good ductility has been achieved simply by using an electric-current pulse treatment. The microstructural refinement mechanism is attributed to the transformation on heating of γ laths in the prior large-grain lamellar structure to Widmanstätten α in several orientations, which on subsequent cooling forms lamellar structure colonies in multiple orientations. This kind of refined multiple-colony lamellar structure was found to enhance the ductility of the TiAl alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, Y.W.: Microstructural evolution and mechanical-properties of a forged gamma-titanium aluminide alloy. Acta Metall. Mater. 40, 1121 1992CrossRefGoogle Scholar
2Pyo, S.G.Kim, N.J.: Role of interface boundaries in the deformation behavior of TiAl polysynthetically twinned crystal: In situ transmission electron microscopy deformation study. J. Mater. Res. 20, 1888 2005CrossRefGoogle Scholar
3Zhang, J.X.Ye, H.Q.: The deformation twin in lamellar Ti3Al/TiAl structure. Solid State Commun. 126, 217 2003CrossRefGoogle Scholar
4Zhu, H.L., Seo, D.Y., Maruyama, K.Au, P.: Grain boundary morphology and its effect on creep of TiAl alloys. Mater. Trans. 45, 3343 2004CrossRefGoogle Scholar
5Schillinger, W., Clemens, H., Dehm, G.Bartels, A.: Microstructural stability and creep behavior of a lamellar gamma-TiAl based alloy with extremely fine lamellar spacing. Intermetallics 10, 459 2002CrossRefGoogle Scholar
6Beddoes, J., Wallace, W.Zhao, L.: Current understanding of creep behaviour of near gamma-titanium aluminides. Int. Mater. Rev. 40, 197 1995CrossRefGoogle Scholar
7Maruyama, K., Yamada, N.Sato, H.: Effects of lamellar spacing on mechanical properties of fully lamellar Ti-39.4mol%Al alloy. Mater. Sci. Eng., A 319(321), 360 2001CrossRefGoogle Scholar
8Jones, S.A.Kaufman, M.J.: Phase-equilibria and transformations in intermediate titanium aluminum-alloys. Acta Metall. Mater. 41, 387 1993CrossRefGoogle Scholar
9Denquin, A.Naka, S.: Phase transformation mechanisms involved in two-phase TiAl-based alloys: 1. Lamellar structure formation. Acta Mater. 44, 343 1996CrossRefGoogle Scholar
10Zhang, X.D., Godfrey, S., Weaver, M., Strangwood, M., Threadgill, P., Kaufman, M.J.Loretto, M.H.: The massive transformation in Ti-Al alloys: Mechanistic observations. Acta Mater. 44, 3723 1996CrossRefGoogle Scholar
11Veeraraghavan, D., Wang, P.Vasudevan, V.K.: Kinetics and thermodynamics of the α → γm, massive transformation in a Ti-47.5 at.%Al alloy. Acta Mater. 47, 3313 1999CrossRefGoogle Scholar
12Ping, W., Viswanathan, G.B.Vasudevan, V.K.: Observation of a massive transformation from alpha to gamma in quenched Ti-48 at.%Al-alloys. Metall. Trans. 23, 690 1992Google Scholar
13Zhang, W.J., Francesconi, L., Evangelista, E.Chen, G.L.: Characterization of Widmanstätten laths and interlocking boundaries in fully-lamellar TiAl-base alloy. Scripta Mater. 37, 627 1997CrossRefGoogle Scholar
14Liu, C.T., Schneibel, J.H., Maziasz, P.J., Wright, J.L.Easton, D.S.: Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics 4, 429 1996CrossRefGoogle Scholar
15Semiatin, S.L., Seetharaman, V., Dimiduk, D.M.Ashbee, K.K.G.: Phase transformation behavior of gamma titanium aluminide alloys during supertransus heat treatment. Metall. Mater. Trans. A 29, 7 1998CrossRefGoogle Scholar
16Dimiduk, D.M., Martin, P.L.Kim, Y.W.: Microstructure development in gamma alloy mill products by thermomechanical processing. Mater. Sci. Eng., A 243, 66 1998CrossRefGoogle Scholar
17Hu, D., Huang, A.J.Wu, X.: TEM characterization of Widmanstätten microstructures in TiAl-based alloys. Intermetallics 13, 211 2005CrossRefGoogle Scholar
18Nakai, K.Ohmri, Y.: Decomposition of α-phase into massive and Widmanstätten structures in a Ti-48 at.% Al alloy in Proceedings of the International Conference on Solid-Solid Phase Transformations’99 (JIMIC-3) edited by M. Koiwa, K. Otsuka, and T. Miyazaki JIM Tokyo 1999 153Google Scholar
19Dey, S.R., Hazotte, A., Bouzy, E.Naka, S.: Development of Widmanstätten laths in a near-gamma TiAl alloy. Acta Mater. 53, 3783 2005CrossRefGoogle Scholar
20Blackburn, M.J.: Some aspects of phase transformations in titanium alloys in The Science Technology and Application of Titanium edited by R.I. Jaffee and N.E. Promisel Pergamon Press Oxford 1970 633CrossRefGoogle Scholar
21Calka, A.Wexler, D.: Mechanical milling assisted by electrical discharge. Nature 419, 147 2002CrossRefGoogle ScholarPubMed
22Zhang, W., Zhao, W.S., Li, D.X.Sui, M.L.: Martensitic transformation from alpha-Ti to beta-Ti on rapid heating. Appl. Phys. Lett. 84, 4872 2004CrossRefGoogle Scholar
23Conrad, H.Sprecher, A.F.: Basic problems and applications in Dislocations in Solids edited by F.R.N. Nabarro Elsevier Amsterdam, The Netherlands 1989 499Google Scholar
24Zhang, Y.G., Han, Y.F., Chen, G.L., Guo, J.T., Wan, X.J.Feng, D.: Structural Intermetallics National Defence Industry Press Bejing 2001 485705Google Scholar
25Veeraraghavan, D., Pilchowski, U., Natarajan, B.Vasudevan, V.K.: Phase equilibria and transformations in Ti-(25-52) at.% Al alloys studied by electrical resistivity measurements. Acta Mater. 46, 405 1998CrossRefGoogle Scholar
26Zhu, H.L., Maruyama, K.Matsuda, J.: Microstructural refinement mechanism by controlling heating process in multiphase materials with particular reference to γ-TiAl. Appl. Phys. Lett. 88, 131908 2006CrossRefGoogle Scholar
27Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H., Leitner, H., Dehm, G., Gerling, R.Schimansky, F.P.: Grain refinement in γ-TiAl-based alloys by solid-state phase transformations. Intermetallics 14, 1380 2006CrossRefGoogle Scholar
28Perez-Bravo, M., Madariaga, I., Ostolaza, K.Tello, M.: Microstructural refinement of a TiAl alloy by a two step heat treatment. Scripta Mater. 53, 1141 2005CrossRefGoogle Scholar
29Xia, Q.F., Wang, J.N., Wang, Y.Yang, J.: Effect of heating rate on the grain refinement of a TiAl alloy by cyclic heat treatment. Mater. Sci. Eng., A 300, 309 2000CrossRefGoogle Scholar
30Ramanujan, R.V.: The transformation between the gamma-phase and alpha-phase in binary and ternary gamma-based titanium aluminides. Acta Metall. Mater. 42, 2313 1994CrossRefGoogle Scholar
31Yasuda, H.Y., Nakano, T.Umakoshi, Y.: Cyclic deformation-behavior of TiAl alloys containing oriented lamellae. Philos. Mag. A 71, 127 1995CrossRefGoogle Scholar
32Kishida, K., Iuni, H.Yamaguchi, M.: Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys. Philos. Mag. A 78, 1 1998CrossRefGoogle Scholar