Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T06:53:11.712Z Has data issue: false hasContentIssue false

Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate

Published online by Cambridge University Press:  31 January 2011

Jong Ho Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yusong, Taejon 305–701, Korea
Pedro Miranda
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Do Kyung Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yusong, Taejon 305–701, Korea
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The role of a compliant adhesive interlayer in determining critical conditions for radial fracture at the undersurfaces of brittle coatings bonded to substrates of dissimilar materials is investigated. Semi-empirical relations for the critical loads are derived by treating the adhesive as part of an effective substrate, thereby reducing the problem to that of a bilayer. A finite-element analysis of a model silicon/epoxy/glass system is used to evaluate adjustable parameters in the analytical relations. In situ experimental observations of crack initiation on the same material system are used to verify these relations. The critical loads depend sensitively on the adhesive thickness and modulus. Delamination at the interface in poorly bonded specimens greatly reduces the critical loads. This analysis affords a basis for predicting the prospective fracture resistance of brittle coatings joined by adhesives.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D., Nature 347, 455 (1991).CrossRefGoogle Scholar
2.Chai, H., Lawn, B.R., and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
3.Scherrer, S.S. and Rijk, W.G.d., Int. J. Prosthodont 6, 462 (1993).Google Scholar
4.Scherrer, S.S., Rijk, W.G.d., Belser, U.C., Meyer, J-M., Dent. Mater. 10, 172 (1994).CrossRefGoogle Scholar
5.Kelly, J.R., J. Prosthet. Dent. 81, 652 (1999).CrossRefGoogle Scholar
6.Lawn, B.R., Deng, Y., and Thompson, V.P., J. Prosthet. Dent. 86, 495 (2001).CrossRefGoogle Scholar
7.Bennison, S.J., Jagota, A., and Smith, C.A., J. Am. Ceram. Soc. 82, 1761 (1999).CrossRefGoogle Scholar
8.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).CrossRefGoogle Scholar
9.Lee, C-S., Kim, D.K., Sanchez, J., Miranda, P., Pajares, A., and Lawn, B.R., J. Am. Ceram. Soc. 85, 2019 (2002).CrossRefGoogle Scholar
10.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959).Google Scholar
11.Hu, X.Z. and Lawn, B.R., Thin Solid Films 322, 225 (1998).CrossRefGoogle Scholar
12.Rhee, Y-W., Kim, H-W., Deng, Y., and Lawn, B.R., J. Am. Ceram. Soc. 84, 1066 (2001).CrossRefGoogle Scholar
13.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., J. Mater. Res. 16, 115 (2001).CrossRefGoogle Scholar
14.Lardner, T.J., Ritter, J.E., Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).CrossRefGoogle Scholar
15.Leevailoj, C., Platt, J.A., Cochran, M.A., and Moore, B.K., J. Prosthet. Dent. 80, 699 (1998).CrossRefGoogle Scholar
16.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., Acta Mater. 49, 3719 (2001).CrossRefGoogle Scholar