Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T08:22:35.869Z Has data issue: false hasContentIssue false

Effect of growth conditions on B-doped carbon nanotubes

Published online by Cambridge University Press:  03 March 2011

Sara M.C. Vieira*
Affiliation:
Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Odile Stéphan
Affiliation:
Laboratoire de Physique des Solides, Universite Paris-Sud, 91405 Orsay, France
David L. Carroll
Affiliation:
Department of Physics, University of Wake Forest, Winston Salem, North Carolina 27109-7507
*
a) Address all correspondence to this author. e-mail: smc81@eng.cam.ac.uk
Get access

Abstract

The modified arc-discharge technique was used for the growth of boron-doped multiwalled carbon nanotubes. A variety of weight percentages of boron and sulfur were mixed (0.5–15 wt%) with graphite powder and packed in the consumable anode. Transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and electron energy loss spectroscopy (EELS) were used to characterize the samples. EELS indicated a small percentage of boron present (<1 at.%) in the nanotubes. Sulfur was used primarily to enhance boron incorporation; however, Raman and TGA measurements indicated fewer defects and/or amorphous material present when sulfur was added.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992).CrossRefGoogle Scholar
2.Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerlings, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 368, 474 (1997).CrossRefGoogle Scholar
3.Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., Achida, Y.: At. structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature. Appl. Phys. Lett. 73, 3839 (1998).CrossRefGoogle Scholar
4.Tans, S.J., Verschueren, A., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).CrossRefGoogle Scholar
5.Radovic, L.R., Karra, M., Skokova, K., Thrower, P.: The role of substitutional boron in carbon oxidation. Carbon 36, 1841 (1998).CrossRefGoogle Scholar
6.Carroll, D.L., Redlich, Ph., Blase, X., Charlier, J.C., Curran, S., Ajayan, P.M., Roth, S., Rühler, M.: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332 (1998).CrossRefGoogle Scholar
7.Charlier, J.C., Terrones, M., Baxendale, M., Meunier, V., Zacharia, T., Rupesinghe, N.L., Hsu, W.K., Grobert, N., Terrones, H., Amaratunga, G.A.J.: Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett. 2, 1191 (2002).CrossRefGoogle Scholar
8.Liu, K., Martel, R., Hsu, W.K.: Electrical transport in doped multiwalled carbon nanotubes. Phys. Rev. B 63, 161404 (2001).CrossRefGoogle Scholar
9.Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K.: Recent development of carbon materials for Li ion batteries. Carbon 38, 183 (2000).CrossRefGoogle Scholar
10.Redlich, Ph., Loeffler, J., Ajayan, P.M., Bill, J., Aldinger, F., Ruhle, M.: B–C–N nanotubes and boron doping of carbon nanotubes. Chem. Phys. Lett. 260, 465 (1996).CrossRefGoogle Scholar
11.Blase, X., Charlier, J.C., De Vita, A., Car, R., Redlich, Ph., Terrones, M., Hsu, W.K., Terrones, H., Carroll, D.L., Ajayan, P.M.: Boron-mediated growth of long helicity-selected carbon nanotubes. Phys. Rev. Lett. 83, 5078 (1999).CrossRefGoogle Scholar
12.Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694 (1995).CrossRefGoogle Scholar
13.Hirahara, K., Suenaga, K., Bandow, S., Iijima, S.: Boron-catalyzed multi-walled carbon nanotube growth with the reduced number of layers by laser ablation. Chem. Phys. Lett. 324, 224 (2000).CrossRefGoogle Scholar
14.Loiseau, A., Willaime, F.: Filled and mixed nanotubes: From TEM studies to the growth mechanism within a phase-diagram approach. Appl. Surf. Sci. 164, 227 (2000).CrossRefGoogle Scholar
15.Stéphan, O., Ajayan, P.M., Colliex, C., Redlich, Ph., Lambert, J.M., Bernier, P., Lefin, P.: Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683 (1994).CrossRefGoogle ScholarPubMed
16.Oberlin, A.: Carbonization and graphitization. Carbon 22, 521 (1984).CrossRefGoogle Scholar
17.Kiang, C.H., Goddard, W.A., Beyers, R., Bethune, D.S.: Carbon nanotubes with single-layer walls. Carbon 33, 903 (1995).CrossRefGoogle Scholar
18.Park, Y.S., Kim, K.S., Jeong, H.J., Kim, W.S., Moon, J.M., An, K.H., Bae, D.J., Lee, Y.S., Park, G.S., Lee, Y.H.: Low-pressure synthesis of single-walled carbon nanotubes by arc discharge. Synth. Met. 126, 245 (2002).CrossRefGoogle Scholar
19.Chopra, N.G., Luyken, R.J., Cherry, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995).CrossRefGoogle ScholarPubMed
20.Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., Smalley, R.E.: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257 (1997).CrossRefGoogle Scholar
21.Zhou, Z.W., Xie, S., Sun, L., Tang, D., Li, Y., Liu, Z., Ci, L., Tan, P., Dong, X., Xu, B., Zhao, B.: Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes. Appl. Phys. Lett. 80, 2553 (2002).CrossRefGoogle Scholar
22.Nemanich, R.J., Solin, S.A.: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
23.Hiura, H., Ebbesen, T.W., Tanigaki, K., Takahashi, H.: Raman studies of carbon nanotubes. Chem. Phys. Lett. 202, 509 (1993).CrossRefGoogle Scholar
24.Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002).CrossRefGoogle Scholar
25.Maultzsch, J., Reich, S., Thomsen, C.: Raman scattering in carbon nanotubes revisited. Phys. Rev. B 65, 233402 (2002).CrossRefGoogle Scholar
26.Mukhopadhhyay, I., Hoshino, N., Kawasaki, S., Okino, F., Hsu, W.K., Touhara, H.: Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J. Electrochem. Soc. 149 A39 (2002).CrossRefGoogle Scholar
27.Tsang, S.C., Harris, P.F.J., Green, M.L.H.: Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362, 520 (1993).CrossRefGoogle Scholar
28.Stéphan, O., Kociak, M., Henrard, L., Suenaga, K., Gloter, A., Tencé, M., Sandré, E., Colliex, C.: Electron energy-loss spectroscopy on individual nanotubes. J. Electron Spectrosc. Relat. Phenom. 114, 209 (2001).CrossRefGoogle Scholar
29.Gai, P.L., Stéphan, O., McGuire, K., Rao, A.M., Dresselhaus, M.S., Dresselhaus, G., Colliex, C.: Structural systematics in boron-doped single wall carbon nanotubes. J. Mater. Chem. 14, 669 (2004).CrossRefGoogle Scholar
30.Egerton, R. F.: Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1996), pp. 229, 287.CrossRefGoogle Scholar
31.Sizov, V.V., Kabachnik, N.M.: Hartree–Slater calculation of the cross sections for inner M- and N-shell ionization of atoms by proton impact. J. Phys. B: At. Mol. Phys. 14, 2013 (1981).CrossRefGoogle Scholar