Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:39:49.499Z Has data issue: false hasContentIssue false

The effect of hydrogen on the formation of carbon nanotubes and fullerenes

Published online by Cambridge University Press:  03 March 2011

X.K. Wang
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston Illinois 60208
X.W. Lin
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston Illinois 60208
M. Mesleh*
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
M.F. Jarrold
Affiliation:
Department of Chemistry, Materials Research Center, Northwestern University, Evanston, Illinois 60208
V.P. Dravid
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
J.B. Ketterson
Affiliation:
Department of Physics and Astronomy, Materials Research Center, Northwestern University, Evanston, Illinois 60208
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
*
a)NSF Research Experience for Undergraduate participant.
Get access

Abstract

A novel method to synthesize “clean” carbon nanotubes with relatively high yield in a hydrogen arc discharge has been developed. The quality and yield of the tubes depend sensitively on the gas pressure in the arc discharge. Sharp, open-ended nanotubes with clear lattice fringes at the edges and empty interiors have been observed. The existence of these frozen-open-ended tubes as part of nanotube-bundles provides evidence for an open-ended growth model for nanotubes. Using time of flight mass spectrometry, it was found that fullerenes, such as C60 and C70, are almost absent from the soot collected in the hydrogen arc discharge. The effect of hydrogen on the formation of fullerenes, both in the laboratory and in space, will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kroto, H. W., Heath, J. R., O'Brien, S.C., Curl, R. F., and Smally, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2Krätschmer, W., Lamb, L. D., Fostiropoules, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
3Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
4Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
5Tsang, S. C., Harris, P. J. F., and Green, M. L. H., Nature (London) 362, 520 (1993).CrossRefGoogle Scholar
6Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
7Iijima, S., Ajayan, P. M., and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).CrossRefGoogle Scholar
8Smalley, R. E., Mater. Sci. Eng. B19, 1 (1993).CrossRefGoogle Scholar
9Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Nayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
10Zhou, O., Fleming, R. M., Murphy, O. W., Chen, C. H., Haddon, R. C., Ramirez, A. P., and Glarum, S. H., Science 263, 1774 (1994).CrossRefGoogle Scholar
11Endo, M. and Kroto, H. W., J. Phys. Chem. 96, 6941 (1992).CrossRefGoogle Scholar
12Ajayan, P. M., Ichihashi, T., and Iijima, S., Chem. Phys. Lett. 202, 384 (1993).CrossRefGoogle Scholar
13Iijima, S., Mater. Sci. Eng. B19, 172 (1993).CrossRefGoogle Scholar
14Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., J. Mater. Res. 7, 2429 (1992).CrossRefGoogle Scholar
15Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W., J. Phys. Chem. Solids 54, 1841 (1993).CrossRefGoogle Scholar
16Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., Appl. Phys. Lett. 62, 1881 (1993).CrossRefGoogle Scholar
17Ebbesen, T. W., Hiura, H., Fujita, J., Ochiai, Y., Matsui, S., and Tanigaki, K., Chem. Phys. Lett. 209, 83 (1993).CrossRefGoogle Scholar
18Li, Z. G., Fagan, P. J., and Liang, L., Chem. Phys. Lett. 207, 148 (1993).CrossRefGoogle Scholar
19Dravid, V. P., Lin, X. W., Wang, Y. Y., Wang, X. K., Yee, A., Ketterson, J. B., and Chang, R. P. H., Science 259, 1601 (1993).CrossRefGoogle Scholar
20Yacaman, M. J., Yoshida, M. M., Rendon, L., and Santiestehan, J. G., Appl. Phys. Lett. 62, 657 (1993).CrossRefGoogle Scholar
21Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335 (1976).CrossRefGoogle Scholar
22Grosser, T. and Hirsch, A., Angew. Chem. Int. Edn. Engl. 32, 1340 (1993).CrossRefGoogle Scholar
23Chang, T. M., Nairn, A., Ahmed, S. N., Goodloe, SG., and Shevlin, P. B., J. Am. Chem. Soc. 114, 7603 (1992).CrossRefGoogle Scholar
24Heath, J. R., Zhang, Q., O'Brien, S. C., Curl, R. F., Kroto, H. W., and Smalley, R.E., J. Am. Chem. Soc. 109, 359 (1987); Allaf, A.W., Hallett, R. A., Balm, S. P., and Kroto, H.W., Int. J. Mod. Phys. B6, 3595 (1992).CrossRefGoogle Scholar
25Lagow, R. J., Kampa, J. J., Wei, H. C., Battle, S. L., Genge, J. W., Laude, D. A., Harper, C. J., Bau, R., Stevens, R. C., Haw, J. F., and Munson, E., Science 267, 362 (1995).CrossRefGoogle Scholar
26Hunter, J. M., Fye, J. L., and Jarrold, M. F., Science 260, 784 (1993); Hunter, J. M., Fye, J. L., Roskamp, E. J., and Jarrold, M. F., J. Phys. Chem. 98, 1810 (1994); van Henblem, G., Gotts, N. G., and Bowers, M. T., Nature (London) 363, 60 (1993).CrossRefGoogle Scholar
27Shelimov, K. B., Hunter, J. M., and Jarrold, M. F., Int. J. Mass Spectrom. Ion Processes 138, 17 (1994).CrossRefGoogle Scholar
28Kroto, H. W. and Jura, M., Astron. Astrophys. 263, 275 (1992).Google Scholar
29Foing, B. H. and Ehrenfreund, P., Nature (London) 369, 296 (1994).CrossRefGoogle Scholar
30Petrie, S. and Bohme, D. K., Mon. Not. R. Astron. Soc. 268, 938 (1994).CrossRefGoogle Scholar