Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:51:30.591Z Has data issue: false hasContentIssue false

Effect of nonstoichiometry on the terahertz absorption of Y3Al5O12 optical ceramics

Published online by Cambridge University Press:  09 September 2014

Romain Gaume*
Affiliation:
The College of Optics & Photonics (CREOL), University of Central Florida, Orlando, FL 32816, USA
Daniel Steere
Affiliation:
Terahertz and Millimeter Wave Laboratory (T-Lab), Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY 14802, USA
S.K. Sundaram
Affiliation:
Terahertz and Millimeter Wave Laboratory (T-Lab), Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY 14802, USA
*
a)Address all correspondence to this author. e-mail: gaume@ucf.edu
Get access

Abstract

We report the effect of nonstoichiometry on the terahertz absorption of fully dense optical ceramics of Y3Al5O12 and compare to that of undoped and 1 at.% Nd3+ doped single crystals. Our research is motivated primarily by the necessity of having better control of stoichiometry during the preparation of transparent yttrium aluminum garnet (YAG) ceramics. A set of twenty ceramic samples was prepared by solid-state sintering of Y2O3 and Al2O3 powder mixtures with compositions ranging from −0.62 to +0.96 mol% of Y2O3 on each side of the stoichiometric garnet composition. After sintering, the samples were highly translucent in the visible range, with attenuations better than 2 cm−1. These samples were characterized using time-domain terahertz spectroscopy between 0.06 and 2.8 THz. Ceramic and single-crystal samples exhibit a similar broad absorption band, which we assign to a 2-phonon difference process, and whose width and intensity depend upon composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J., Sadowski, B., and Aggarwal, I.: Ceramic laser materials. Materials 5, 258277 (2012).Google Scholar
Richardson, M. and Gaume, R.: Transparent ceramics for lasers - A game-changer. Am. Ceram. Soc. Bull. 91(4), 3033 (2012).Google Scholar
Wang, Y., Baldoni, G., Rhodes, W.H., Brecher, C., Shaha, A., Shirwadkara, U., Glodoa, J., Cherepyc, N., and Payne, S.: Transparent garnet ceramic scintillators for gamma-ray detection. Proc. SPIE 8507, 850717 (2012).Google Scholar
Krell, A., Klimke, J., and Hutzler, T.: Transparent compact ceramics: Inherent physical issues. Opt. Mater. 31, 11441150 (2009).Google Scholar
Dericioglu, A.F., Boccaccini, A.R., Dlouhy, I., and Kagawa, Y.: Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics. Mater. Trans. 46(5), 9961003 (2005).CrossRefGoogle Scholar
Zhu, L-L., Zhang, Z-J., Liu, B-Q., Huang, M-L., Wang, C-Y., Chen, H-H., Man, Z-Y., and Zhao, J-T.: Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator. IEEE Trans. Nucl. Sci. 61(1), 312315 (2014).Google Scholar
Shluger, A.L., McKenna, K.P., Sushko, P.V., Munoz Ramo, D., and Kimmel, A.V.: Modelling of electron and hole trapping in oxides. Modell. Simul. Mater. Sci. Eng. 17, 084004 (2009).Google Scholar
Boulesteix, R., Maître, A., Baumard, J-F., Rabinovitch, Y., and Reynaud, F.: Light scattering by pores in transparent Nd:YAG ceramics for lasers: Correlations between microstructure and optical properties. Opt. Express 18(14), 14992 (2010).CrossRefGoogle ScholarPubMed
Patel, A.P., Stanek, C.R., and Grimes, R.W.: Comparison of defect processes in REAlO3 perovskites and RE3Al5O12 garnets. Phys. Status Solidi B 250(8), 16241631 (2013).Google Scholar
Patel, A.P., Levy, M.R., Grimes, R.W., Gaume, R.M., Feigelson, R.S., McClellan, K.J., and Stanek, C.R.: Mechanisms of non-stoichiometry in Y3Al5O12. Appl. Phys. Lett. 93, 191902 (2008).CrossRefGoogle Scholar
McDevitt, N.T.: Infrared lattice spectra of rare-earth aluminum, gallium, and iron garnets. J. Opt. Soc. Am. 59(9), 12401244 (1969).Google Scholar
Hurrell, J.P., Porto, S.P.S., Chang, I.F., Mitra, S.S., and Bauman, R.P.: Optical phonons of yttrium aluminum garnet. Phys. Rev. 173(3), 851856 (1968).Google Scholar
Goel, P., Mittal, R., Choudhury, N., and Chaplot, S.L.: Lattice dynamics and born instability in yttrium aluminum garnet, Y3Al5O12. J. Phys.: Condens. Matter 22, 065401 (2010).Google ScholarPubMed
Papagelis, K., Kanellis, G., Zorba, T., Ves, S., and Kourouklis, G.A.: Infrared lattice spectra of Tm3Al5O12 and Yb3Al5O12 single crystals. J. Phys.: Condens. Matter 14, 915923 (2002).Google Scholar
Tsai, T-R., Chang, C-F., Chen, S-J., Tani, M., Yamaguchi, M., Sumikura, H., Chiang, H-P., Chen, Y-F., and Tse, W-S.: Terahertz optical constants of ytterbium-doped yttrium aluminum garnet crystals. J. Appl. Phys. 99, 093110 (2006).Google Scholar
Papagelis, K. and Ves, S.: Vibrational properties of the rare earth aluminum garnets. J. Appl. Phys. 94, 6491 (2003).Google Scholar
Chiriu, D., Ricci, P.C., Carbonaro, C.M., Anedda, A., Aburish-Hmidat, M., Grosu, A., Lorrai, P.G., and Fortin, E.: Vibrational properties of mixed (Y3Al5O12)x-(Y3Sc2Ga3O12)1−x crystals. J. Appl. Phys. 100, 033101 (2006).CrossRefGoogle Scholar
Lee, Y-S.: Principles of Terahertz Science and Technology, 1st ed.; Springer: New York, 2009; pp. 59.Google Scholar
Zhang, W., Azad, A.K., and Grischkowsky, D.: Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN. Appl. Phys. Lett. 82(17), 2841 (2003).CrossRefGoogle Scholar
Jepsen, P.U. and Fischer, B.M.: Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 30(1), 29 (2005).Google Scholar
Jepsen, P.U., Cooke, D.G., and Koch, M.: Terahertz spectroscopy and imaging – Modern techniques and applications. Laser Photonics Rev. 5, 124 (2011).CrossRefGoogle Scholar
Hofmeister, A.M. and Campbell, K.R.: Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets. J. Appl. Phys. 72, 638 (1992).CrossRefGoogle Scholar
Ziman, J.M.: Electrons and phonons (Clarendon Press, Oxford, 1960); p. 134. Chapter III.Google Scholar
Burnstein, E.: Interactions of phonons with photons: Infrared, Raman and Brillouin spectra. In Phonons and Phonon Interactions, Bak, T.A. ed.; W.A Benjamin, Inc.: New York, 1964; Copyright.Google Scholar
Lengfellner, H. and Ren, K.F.: Far-infrared laser spectroscopy of phonon difference band absorption in TlCl. Z. Phys. B: Condens. Matter 39, 1114 (1980).Google Scholar
Lengfellner, H., Rindt, R., and Ren, K.F.: Detection of acoustic zone-boundary phonons by phonon difference absorption. J. Phys. 12(42), C6259 (1981).Google Scholar
Komandin, G.A., Porodinkov, O.E., Spector, I.E., and Volkov, A.A.: Multiphonon absorption in a MgO single crystal in the terahertz range. Phys. Solid State 51(10), 20452050 (2009).Google Scholar
Stolen, R. and Dransfeld, K.: Far-infrared lattice absorption in alkali halide crystals. Phys. Rev. 139, A1295A1303 (1965).CrossRefGoogle Scholar
Stolen, R.H.: Temperature dependence of far-infrared absorption in GaAs. Phys. Rev. B 11(2), 767770 (1975).Google Scholar