Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T22:43:06.385Z Has data issue: false hasContentIssue false

Effect of silver addition on the microstructure of YBa2Cu3O7−x

Published online by Cambridge University Press:  03 March 2011

Jondo Yun
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015-3195
Martin P. Harmer
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015-3195
Ye T. Chou
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015-3195
Get access

Abstract

The variation of grain morphology in silver-doped YBa2Cu3O7−x was investigated as a function of sintering temperature, atmosphere, and amount of Ag addition. In the presence of the liquid phase formed at 925 °C for undoped samples, and at 910 °C for silver-doped samples, the grain shape and size changed drastically from small and nearly equiaxed to large and elongated. The anisotropy in the grain shape was sensitive to both the silver content and the atmosphere. On the other hand, while the grain size was generally insensitive to the atmosphere, it decreased as the silver content increased. The silver phase, if sufficiently large, would block the grain growth in the matrix. The amount of silver for effective blocking was predicted from a microstructural model, and the prediction was in agreement with experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2Zhang, L., Chan, H., and Harmer, M. P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 271.Google Scholar
3Yun, J., Harmer, M. P., Chou, Y. T., and Arora, O. P., in Superplasticity in Advanced Materials, edited by Hori, S. and Furushiro, N. (Japan Soc. Res. Superplasticity, Japan, 1991), p. 275.Google Scholar
4Yun, J., Harmer, M. P., and Chou, Y. T., Scripta Metall. et Mater. 29, 267 (1993).CrossRefGoogle Scholar
5Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).CrossRefGoogle Scholar
6Yeh, F. and White, K. W., J. Appl. Phys. 70, 4989 (1991).CrossRefGoogle Scholar
7Singh, J. P., Leu, H. J., Poeppel, R. B., Van Voorhees, E., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
8Dwir, B., Affronte, M., and Pavuna, D., Physica C 162–164, 351 (1989).CrossRefGoogle Scholar
9Imanaka, N., Saito, F., Imai, H., and Adachi, G-y., JJAP 28, L580 (1989).CrossRefGoogle Scholar
10Chang, C. A. and Tsai, J. A., Appl. Phys. Lett. 53, 1976 (1988).CrossRefGoogle Scholar
11Yoshizawa, S., Ogawa, Y., Yamamoto, K., Ishikawa, Y., and Shiomi, K., in Adv. Supercond. II, Proc. 2nd Int. Symp. Supercond. (ISS'89), edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1989), p. 223Google Scholar
12Chang, E. K., Kirschner, M. J., Hong, D. J.L., and Smyth, D.M., in Processing-Microstructure-Property Relationship III, presented in ACerS. Annual Meeting in Indianapolis (1989).Google Scholar
13Handbook of Chemistry and Physics, 62nd ed., edited by West, R. C. and Astle, M.J. (CRC Press, Boca Raton, FL, 1981).Google Scholar
14Yun, J., Güven, G., and Chou, Y. T., J. Mater. Sci. Lett. 12, 1080 (1993).CrossRefGoogle Scholar
15ASTM Designation E112-85, Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1986).Google Scholar
16Lay, K. W. and Renlund, G. M., J. Am. Ceram. Soc. 73, 1208 (1990).CrossRefGoogle Scholar
17Ullman, J. E., McCallum, R.W., and Verhoeven, J.D., J. Mater. Res. 4, 752 (1989).CrossRefGoogle Scholar
18Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
19Roth, R. S., Rawn, C. J., Beech, F., Whitler, J. D., and Anderson, J. O., in Ceram. Supercond. II, edited by Yan, M.F. (The American Ceramic Society, Westerville, OH, 1988), p. 13.Google Scholar
20Yan, M. F., Barns, R. L., O'Bryan, H. M. Jr., Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
21Yan, M. F., Cannon, R. M., and Bowen, H. K., in Ceramic Microstructure '76, edited by Fulrath, R. M. and Pask, J. A. (Westview Press, Boulder, CO, 1976), p. 276.Google Scholar
22Kooy, C., in Sci. Ceram., edited by Stewart, G. H. (Academic Press, London, 1962), Vol. 1, p. 21.Google Scholar
23Kaysser, W. A., Sprissler, M., Handwerker, C. A., and Blendell, J. E., J. Am. Ceram. Soc. 70, 339 (1987).CrossRefGoogle Scholar
24Song, H. and Coble, R., J. Am. Ceram. Soc. 73, 2077 (1990).CrossRefGoogle Scholar
25Bennison, S. J. and Harmer, M. P., J. Am. Ceram. Soc. 68, C22 (1985).Google Scholar
26German, R. M., in Liquid Phase Sintering (Plenum Press, New York, 1985), Chap. 2.CrossRefGoogle Scholar
27Schmid, H. and Rühle, M., J. Mater. Sci. 19, 615 (1984).CrossRefGoogle Scholar
28Bateman, C. A., Bennison, S. J., and Harmer, M. P., J. Am. Ceram. Soc. 72, 1241 (1989).CrossRefGoogle Scholar
29Deslandes, F., Raveau, B., Dubots, P., and Legat, D., Solid State Commun. 71, 407 (1989).CrossRefGoogle Scholar
30French, J. D., Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 73, 2508 (1990).CrossRefGoogle Scholar
31Lange, F. F. and Hirlinger, M. M., J. Am. Ceram. Soc. 67, 164 (1984).CrossRefGoogle Scholar
32Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
33Exner, H. E. and Lukas, H. L., Metallography 4, 325 (1971).CrossRefGoogle Scholar