Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T04:36:36.914Z Has data issue: false hasContentIssue false

Effect of SiO2 and Y2O3 additives on the anisotropic grain growth of dense mullite

Published online by Cambridge University Press:  31 January 2011

T. Huang
Affiliation:
University of Missouri, Department of Ceramic Engineering, Rolla, Missouri 65409
M. N. Rahaman
Affiliation:
University of Missouri, Department of Ceramic Engineering, Rolla, Missouri 65409
T-I Mah
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLLN, Wright-Patterson Air Force Base, Ohio 45433, and UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432
T. A. Parthasarathay
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLLN, Wright-Patterson Air Force Base, Ohio 45433, and UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432
Get access

Abstract

Mullite powder with a nearly stoichiometric composition was doped with 1.5–5 wt% SiO2 or 0.5–1.0 wt% Y2O3 and hot pressed at 1525–1550 °C to produce almost fully dense materials. The effect of the additives on the grain growth of the dense systems was investigated during subsequent annealing at temperatures above that of the eutectic (∼1590 °C) for the SiO2–Al2O3 system. The average length and width of the grains were measured by image analysis of polished and etched sections. At 1750 °C, anisotropic grain growth was relatively rapid, leading to the formation of rodlike grains. Compared to the undoped mullite, the addition of SiO2 and Y2O3 produced a small reduction in the grain growth kinetics. Transmission electron microscopy revealed that the glassy second phase was concentrated at the three-grain junctions or distributed inhomogeneously at the grain boundaries. For the materials annealed at 1750 °C, the indentation fracture toughness at room temperature increased from 2.0 to 2.5 MPa m1/2 for the undoped mullite to values as high as 4.0–4.5 MPa m1/2 for the doped mullite. The implications of the data for enhancing the fracture toughness of mullite by the in situ development of a microstructure of elongated grains are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Becher, P.F., J. Am. Ceram. Soc. 74, 255 (1991).CrossRefGoogle Scholar
2.Sajgalik, P., Dusza, J., and Hoffmann, M.J., J. Am. Ceram. Soc. 78, 2619 (1995).CrossRefGoogle Scholar
3.Padture, N.T., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
4.Cao, J.J., Moberly-Chan, W.J., De Jonghe, L.C., Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).Google Scholar
5.Watanabe, H., Kimura, T., and Yamaguchi, T., J. Am. Ceram. Soc. 72, 289 (1989).CrossRefGoogle Scholar
6.Watanabe, H., Kimura, T., and Yamaguchi, T., J. Am. Ceram. Soc. 74, 139 (1991).CrossRefGoogle Scholar
7.Kozlowski, G., Rele, S., Lee, D.F., and Salama, K., J. Mater. Sci. 26, 1056 (1991).CrossRefGoogle Scholar
8.Lo, W., Stevens, R., Doyle, R., Campbell, A.M., and Liang, W.Y., J. Mater. Res. 10, 2433 (1995).Google Scholar
9.Seabaugh, M., Horn, D., Kerscht, I., Hong, S-H., and Messing, G.L., in Sintering Technology, edited by German, R.M., Messing, G.L., and Cornwall, R.G. (Marcel Dekker, New York, 1996), p. 341.Google Scholar
10.Kunaver, U. and Kolar, D., Acta Metall. Mater. 41, 2255 (1993).CrossRefGoogle Scholar
11.Yang, W., Chen, L-Q., and Messing, G.L., Mater. Sci. Eng. A195, 179 (1995).CrossRefGoogle Scholar
12.Mazdiyasni, K.S. and Brown, L.M., J. Am. Ceram. Soc. 55, 548 (1972).Google Scholar
13.Metcalfe, B.L. and Sant, J.H., Trans. J. Br. Ceram. Soc. 74, 193 (1975).Google Scholar
14.Mah, T-I. and Mazdiyasni, K.S., J. Am. Ceram. Soc. 66, 699 (1983).Google Scholar
15.Kanzaki, S., Tabata, H., Kumazawa, T., and Ohta, S., J. Am. Ceram. Soc. 68, C6 (1985).CrossRefGoogle Scholar
16.Kanzaki, S., Abe, O., Ohashi, M., and Tabata, H., in Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (Verlag Deutsche Keramische Gesselscaft, Bad Honnef, Germany, 1986), p. 625.Google Scholar
17.Schneider, H., Okada, K., and Pask, J.A., Mullite and Mullite Ceramics (Wiley, New York, 1994).Google Scholar
18. J. Eur. Ceram. Soc. (Mullite '94) 16, 125 (1996).Google Scholar
19. J. Am. Ceram. Soc. 74, 2341 (1991).CrossRefGoogle Scholar
20.Michel, D., Mazerolles, L., and Portier, R., Ceram. Trans. 6, 435 (1990).Google Scholar
21.Okada, K. and Otuska, N., J. Am. Ceram. Soc. 74, 2414 (1991).Google Scholar
22.Schneider, H., Ceram. Trans. 6, 135 (1990).Google Scholar
23.Hong, S-H., Cermignani, W., and Messing, G.L., J. Eur. Ceram. Soc. 16, 133 (1996).Google Scholar
24.Hong, S-H. and Messing, G.L., J. Am. Ceram. Soc. 81, 1269 (1998).Google Scholar
25.Amaraki, S. and Roy, R., J. Am. Ceram. Soc. 45, 229 (1962).CrossRefGoogle Scholar
26.Aksay, I.A. and Pask, J.A., J. Am. Ceram. Soc. 58, 507 (1975).Google Scholar
27.Risbud, S.H. and Pask, J.A., J. Mater. Sci. 13, 1449 (1978).CrossRefGoogle Scholar
28.Prochazka, S. and Klug, F.J., J. Am. Ceram. Soc. 66, 874 (1983).CrossRefGoogle Scholar
29.Klug, F.J., Prochazka, S., and Doremus, R.H., J. Am. Ceram. Soc. 70, 750 (1987).CrossRefGoogle Scholar
30.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).Google Scholar
31.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 539 (1981).CrossRefGoogle Scholar
32.Evans, A.G. and Charles, E.A., J. Am. Ceram. Soc. 59, 371 (1976).Google Scholar
33.Kibbel, B.W. and Heuer, A.H., J. Am. Ceram. Soc. 72, 517 (1989).CrossRefGoogle Scholar
34.Laraia, V.J., Rus, I.L., and Heuer, A.H., J. Am. Ceram. Soc. 78, 1532 (1995).CrossRefGoogle Scholar
35.Hyatt, M.J. and Day, D.E., J. Am. Ceram. Soc. 70, C283 (1987).Google Scholar