Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:37:01.620Z Has data issue: false hasContentIssue false

Effect of the Nanoparticles on the Structure and Crystallization of Amorphous Silicon Thin Films Produced by rf Glow Discharge

Published online by Cambridge University Press:  31 January 2011

E. Bertran
Affiliation:
Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E 08028 Barcelona, Spain
S. N. Sharma
Affiliation:
Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E 08028 Barcelona, Spain
G. Viera
Affiliation:
Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E 08028 Barcelona, Spain
J. Costa
Affiliation:
Departament d'Enginyeria Industrial, Universitat de Girona, Av. Lluis Santaló S/N, E 17071 Girona, Spain
P. St'ahel
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (CNRS, UPR 258), Ecole Polytechnique, F-91128 Palaiseau Cedex, France
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (CNRS, UPR 258), Ecole Polytechnique, F-91128 Palaiseau Cedex, France
Get access

Abstract

Thin films of nanostructured silicon (ns-Si:H) were deposited by plasma-enhanced chemical vapor deposition in the presence of silicon nanoparticles at 100 °C substrate temperature using a silane and hydrogen gas mixture under continuous wave (cw) plasma conditions. The nanostructure of the films has been demonstrated by diverse ways: transmission electron microscopy, Raman spectroscopy, and x-ray diffraction, which have shown the presence of ordered silicon clusters (1–2 nm) embedded in an amorphous silicon matrix. Because of the presence of these ordered domains, the films crystallize faster than standard hydrogenated amorphous silicon samples, as evidenced by electrical measurements during the thermal annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Spears, K. G., Robinson, T. J., and Roth, R. M., IEEE Trans. Plasma Sci. PS–14, 179 (1986).CrossRefGoogle Scholar
2.Selwyn, G. S., Singh, J., and Benett, R. S., J. Vac. Sci. Technol. A 7, 2758 (1989).CrossRefGoogle Scholar
3.Jellum, G. M. and Graves, D. B., J. Appl. Phys. 67, 6490 (1990).CrossRefGoogle Scholar
4.Watanabe, Y., Shiratani, M., Kubo, Y., Ogawa, I., and Ogi, S., Appl. Phys. Lett. 53, 1263 (1988).CrossRefGoogle Scholar
5.Bertran, E., Costa, J., Sardin, G., Campmany, J., Andújar, J. L., and Canillas, A., Plasma Sources Sci. Technol. 3, 348 (1994).CrossRefGoogle Scholar
6.Costa, J., Roura, P., Sardin, G., Morante, J. R., and Bertran, E., Appl. Phys. Lett. 64, 463 (1994).CrossRefGoogle Scholar
7.Cabarrocas, P. Roca i, Gay, P., and Hadjadj, A., J. Vac. Sci. Technol. A 14, 655 (1996).CrossRefGoogle Scholar
8.Molecularly Developed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994).Google Scholar
9.Ross, R. C. and Jaklik, J., J. Appl. Phys. 55, 3785 (1984).CrossRefGoogle Scholar
10.Cabarrocas, P. Roca i, J. Non-Cryst. Solids 164–166, 37 (1993).CrossRefGoogle Scholar
11.Lloret, A., Bertran, E., Andújar, J. L., Canillas, A., and Morenza, J. L., J. Appl. Phys. 69, 632 (1991).CrossRefGoogle Scholar
12.Howling, A. A., Dorier, J-L., and Hollenstein, Ch., Appl. Phys. Lett. 62, 1341 (1993).CrossRefGoogle Scholar
13.Lee, C. W., Lee, C., and Kim, Y. T., Appl. Phys. A 56, 123 (1993).CrossRefGoogle Scholar
14.Veprek, S., Iqbal, Z., and Sarott, F. A., Philos. Mag. B 45, 137 (1982).CrossRefGoogle Scholar
15.He, Y., Yin, C., Cheng, G., Wang, L., Liu, X., and Hu, G. Y., J. Appl. Phys. 75, 797 (1994).CrossRefGoogle Scholar
16.Guinier, A., in X-ray Diffraction (Freeman, San Francisco, CA, 1963), p. 124.Google Scholar
17.Sharma, S. N., Bandyopadhyay, A. K., Banerjee, R., Batabyal, A. K., and Barua, A. K., Phys. Rev. B. 43, 4503 (1991).CrossRefGoogle Scholar
18.Boufendi, L., Plain, A., J. Ph. Blondeau, Bouchoule, A., Laure, C., and Toogood, M., Appl. Phys. Lett. 60, 169 (1992).CrossRefGoogle Scholar
19.Leudtke, W. D. and Landman, U., Phys. Rev. B 37, 4656 (1988).CrossRefGoogle Scholar