Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T00:09:19.287Z Has data issue: false hasContentIssue false

Effects of homoepitaxial surfaces and interface compounds on the in-plane epitaxy of YBCO films on yttria-stabilized zirconia

Published online by Cambridge University Press:  31 January 2011

D.K. Fork
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305, and Xerox Palo Alto Research Center, Palo Alto, California 94304
S.M. Garrison
Affiliation:
Conductus Inc., Sunnyvale, California 94086
Marilyn Hawley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T.H. Geballe
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
Get access

Abstract

Control of the in-plane epitaxial alignment of c-axis YBa2Cu3O7−δ (YBCO) films on yttria-stabilized zirconia (YSZ) substrates is necessary for achieving optimal transport properties. We have used pulsed laser deposition to grow homoepitaxial YSZ and heteroepitaxial CeO2 on YSZ single crystal substrates. This procedure dramatically improves the epitaxy of YBCO and reduces the number of low and high angle grain boundaries. We have also studied the effects of preparing the YSZ growth surface with approximately monolayer amounts of CuO, Y2O3, BaO, and BaZrO3 to determine the effects these compositional variations have on the subsequent YBCO epitaxy. CuO, Y2O3, and BaZrO3 induce an in-plane crystallography of YBCO distinct from that initiated with BaO. Both homoepitaxy and monolayer depositions may be carried out in situ and are simple and effective for controlling the epitaxy and electrical properties of YBCO on YSZ. The effects of substrate temperature, oxygen pressure, and yttria content have also been studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Berezin, A. B., Yuan, C. W., and de Lozane, A. L., Appl. Phys. Lett. 57, 90 (1990).CrossRefGoogle Scholar
2.Char, K., Newman, N., Garrison, S. M., Barton, R. W., Taber, R. C., Laderman, S. S., and Jacowitz, R. D., Appl. Phys. Lett. 57, 409(1990).CrossRefGoogle Scholar
3.Wu, X. D., Muenchausen, R. E., Nogar, N. S., Pique, A., Edwards, R., Wilkins, B., Ravi, T. S., Huang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58, 304 (1991).CrossRefGoogle Scholar
4.Char, K., Colclough, M. S., Lee, L. P., and Zaharchuk, G., Appl. Phys. Lett. 59, 2177 (1991).CrossRefGoogle Scholar
5.Fork, D. K., Char, K., Bridges, F., Tahara, S., Lairson, B., Boyce, J. B., Connell, G. A. N., and Geballe, T. H., Physica C 162164 121 (1989).Google Scholar
6.Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 1792 (1989).CrossRefGoogle Scholar
7.Tietz, L. A., Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).CrossRefGoogle Scholar
8.Shi, W., Shi, J., Sun, J., Yao, W., and Zh. Qi, Appl. Phys. Lett. 57, 822 (1990).CrossRefGoogle Scholar
9.Zheng, J. P., Dong, S. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 540 (1991).CrossRefGoogle Scholar
10.Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).CrossRefGoogle Scholar
11.Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, Julia M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).CrossRefGoogle Scholar
12.Myoren, H., Nishiyama, Y., Miyamoto, N., Kai, Y., Tamanaka, T., Osaka, Y., and Nishiyama, F., Jpn. J. Appl. Phys. 29, L955 (1990).CrossRefGoogle Scholar
13.Norton, D. P., Lowndes, D. H., Budai, J. D., Christen, D. K., Jones, E. C., Lay, K. W., and Tkaczyk, J. E., Appl. Phys. Lett. 57, 1164 (1990); K. S. Harshavardhan, R. Ramesh, T. S. Ravi, S. Sampere, A. Inam, C. C. Chang, G. Hull, M. Rajeswari, T. Sands, T.Venkatesan, M. Reeves, J. E. Tkaczyk, and K. W. Lay, Appl. Phys. Lett. 59, 1638 (1991).CrossRefGoogle Scholar
14.Witanachchi, S., Patel, S., Zhu, Y. Z., Kwok, H. S., and Shaw, D. T., J. Mater. Res. 5, 717 (1990); A. Kumar, L. Ganapathi, S. M. Kanetkar, and J. Narayan, Appl. Phys. Lett. 57, 2594 (1990); A. Kumar, L. Ganapathi, S. M. Kanetkar, and J. Narayan, J. Appl. Phys. 69, 2410 (1991); J. Saitoh, M. Fukutomi, K. Komori, Y. Tanaka, T. Asano, H. Maeda, and H. Takahara, Jpn. J. Appl. Phys. 30, L898 (1991); R. P. Reade, X. L. Mao, and R. E. Russo, Appl Phys. Lett. 59, 739 (1991).CrossRefGoogle Scholar
15.Samara, G. A., J. Appl. Phys. 68, 4214 (1990).CrossRefGoogle Scholar
16.Fork, D. K., Barrera, A., Geballe, T. A., Viano, A. M., and Fenner, D. B., Appl. Phys. Lett. 57, 2504 (1990).CrossRefGoogle Scholar
17.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988); D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
18.Ivanov, Z. G., Nilsson, P. A., Winkler, D., Alarco, J. Å., Claeson, T., Stepantsov, E. A., and Tzalenchuk, A. Ya., Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
19.Laderman, S. S., Taber, R. C., Jacowitz, R. D., Moll, J. L., Eom, C. B., Hylton, T. L., Marshall, A. F., Geballe, T. H., and Beasley, M. R., Phys. Rev. B 43, 2922 (1991).CrossRefGoogle Scholar
20.Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrman, R. A., Jian Li, and Mayer, J. W., Appl. Phys. Lett. 57, 1687 (1990).CrossRefGoogle Scholar
21.Streiffer, S. K., Lairson, B. M., Eom, C. B., Marshall, A. F., Bravman, J. C., and Geballe, T. H., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmer, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 363.Google Scholar
22.Cima, M. J., Schneider, J. S., Peterson, S. C., and Coblenz, W., Appl. Phys. Lett. 53, 710 (1988).CrossRefGoogle Scholar
23.Ravi, T. S., Huang, D. M., Ramesh, R., Chan, Siu Wau, Nazar, L., Chen, C. Y., Inam, A., and Venkatesan, T., Phys. Rev. B 42, 10141 (1990).CrossRefGoogle Scholar
24.Eom, C. B., private communication.Google Scholar
25.Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkins, B., Appl. Phys. Lett. 57, 2484 (1990).CrossRefGoogle Scholar
26.Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).CrossRefGoogle Scholar
27.Lee, L. P., Char, K., Colclough, M. S., and Zaharchuk, G., Appl. Phys. Lett. 59, 3051 (1991).CrossRefGoogle Scholar
28.Fiory, A. T., Hebard, A. F., Mankiewich, P. M., and Howard, R. E., Appl. Phys. Lett. 52, 2165 (1988).CrossRefGoogle Scholar
29.Steele, D. and Fender, B. E. F., J. Phys. C 7, 1 (1974).CrossRefGoogle Scholar
30.Stubicon, V. S., Adv. Ceram. 24, 71 (1988).Google Scholar
31.Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Maley, M., Rollett, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett. 58, 2165 (1991).CrossRefGoogle Scholar
32.Kanai, Masaki, Kawai, Tomoji, and Kawai, Shichio, Appl. Phys. Lett. 58, 771 (1991).CrossRefGoogle Scholar
33.Fukumoto, H., Imura, T., and Osaka, Y., Appl. Phys. Lett. 55, 360 (1989).CrossRefGoogle Scholar
34.Wycoff, R. W. G., Crystal Structures (Interscience, New York, 1963), Vol. 2, p. 4.Google Scholar
35.Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, Ivan K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
36.Balluffi, R. W., Brokman, A., and King, A. H., Acta Metall. 30, 1453 (1982).CrossRefGoogle Scholar