Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T05:55:50.424Z Has data issue: false hasContentIssue false

The effects of humidity and surface free energy on adhesion force between atomic force microscopy tip and a silane self-assembled monolayer film

Published online by Cambridge University Press:  31 January 2011

Chien-Chao Huang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, HsinChu 300, Taiwan
Lijiang Chen
Affiliation:
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310012, China
Tinh Nguyen
Affiliation:
Building and Fire Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Sanboh Lee*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, HsinChu 300, Taiwan
*
a)Address all correspondence to this author. e-mail: sblee@mx.nthu.edu.tw
Get access

Abstract

The relationship between atomic force microscopy probe-sample adhesion force and relative humidity (RH) at five different levels of surface free energy (γs) of an organic self-assembled monolayer (SAM) has been investigated. Different γs levels were achieved by exposing a patterned SiO2/CH3-terminated octyldimethylchlorosilane SAM sample to an ultraviolet (UV)/ozone atmosphere. A model consisting of the Laplace-Kelvin theory for capillary condensation for nanosized probe and probe-sample molecular interaction was derived to describe the adhesion force as a function of RH from 25 to 90% for different SAM γs values. The equations were solved analytically by using an equivalent curvature of the probe tip shape. Experimental results show that the adhesion force increases slightly with RH for nonpolar SAM. However, for polar SAM surfaces, it increases at first, reaches a maximum, and then decreases. Both the rate of increase and the maximum of the adhesion force with humidity are γs-dependent, which is in good agreement with theoretical prediction. The large rise in the adhesion force in this RH range is due to the capillary force.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Butt, H.J., Cappella, B., Kappl, M.Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1 (2005)CrossRefGoogle Scholar
2.Frisbie, C.D., Rozsnyai, L.F., Noy, A., Wrighton, M.S., Lieber, C.M.Functional group imaging by chemical force microscopy. Science 265, 2071 (1994)CrossRefGoogle ScholarPubMed
3.Mckendry, R., Theoclitou, M.E., Rayment, T., Abell, C.Chiral discrimination by chemical force microscopy. Nature 391, 566 (1998)CrossRefGoogle Scholar
4.Noy, A., Vezenov, D.V., Lieber, C.M.Chemical force microscopy. Annu. Rev. Mater. Sci. 27, 381 (1997)CrossRefGoogle Scholar
5.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52 (1998)CrossRefGoogle ScholarPubMed
6.Leite, F.L., Herrmann, P.S.P.Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: A review. J. Adhes. Sci. Technol. 19, 365 (2005)CrossRefGoogle Scholar
7.Binggeli, M., Mate, C.M.Influence of capillary condensation of water on nanotribology studied by force microscopy. Appl. Phys. Lett. 65, 415 (1994)CrossRefGoogle Scholar
8.He, M., Blum, A.S., Aston, D.E., Buenviaje, C., Overney, R.M., Luginbühl, R.Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355 (2001)CrossRefGoogle Scholar
9.Hu, J., Xiao, X.D., Ogletree, D.F., Salmeron, M.Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268, 267 (1995)CrossRefGoogle ScholarPubMed
10.Xu, L., Lio, A., Hu, J., Ogletree, D.F., Salmeron, M.Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 102, 540 (1998)CrossRefGoogle Scholar
11.Xiao, X., Qian, L.Investigation of humidity-dependent capillary force. Langmuir 16, 8153 (2000)CrossRefGoogle Scholar
12.Sedin, D.L., Rowlen, K.L.Adhesion forces measured by atomic force microscopy in humid air. Anal. Chem. 72, 2183 (2000)CrossRefGoogle ScholarPubMed
13.Pakarinen, O.H., Foster, A.S., Paajanen, M., Kalinainen, T., Katainen, J., Makkonen, I., Lahtinen, J., Nieminen, R.M.Towards an accurate description of the capillary force in nanoparticle-surface interactions. Modell. Simul. Mater. Sci. Eng. 13, 1175 (2005)CrossRefGoogle Scholar
14.Paajanen, M., Katainen, J., Pakarinen, O.H., Foster, A.S., Lahtinen, J.Experimental humidity dependency of small particle adhesion on silica and titania. J. Colloid Interface Sci. 304, 518 (2006)CrossRefGoogle Scholar
15.Sirghi, L., Nakagiri, N., Sugisaki, K., Sugimura, H., Takai, O.Effect of sample topography on adhesive force in atomic force spectroscopy measurements in air. Langmuir 16, 7796 (2000)CrossRefGoogle Scholar
16.Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S.Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 18, 8045 (2002)CrossRefGoogle Scholar
17.Feiler, A.A., Jenkins, P., Rudland, M.Effect of relative humidity on adhesion and frictional properties of micro- and nano-scopic contacts. J. Adhes. Sci. Technol. 19, 165 (2005)CrossRefGoogle Scholar
18.Feiler, A.A., Stiernstedt, J., Theander, K., Jenkins, P., Rudland, M.Effect of capillary condensation on friction force and adhesion. Langmuir 23, 517 (2007)CrossRefGoogle ScholarPubMed
19.Asay, D.B., Kim, S.H.Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124, 174712 (2006)CrossRefGoogle ScholarPubMed
20.Jang, J., Yang, M., Schatz, G.Microscopic origin of the humidity dependence of the adhesion force in atomic force microscopy. J. Chem. Phys. 126, 174705 (2007)CrossRefGoogle ScholarPubMed
21.Farshchi-Tabrizi, M., Kappl, M., Cheng, Y., Gutmann, J., Butt, H-J.On the adhesion between fine particles and nanocontacts: An atomic force microscope study. Langmuir 22, 2171 (2006)CrossRefGoogle ScholarPubMed
22.Chen, L., Gu, X., Fasolka, M.J., Martin, J.W., Nguyen, T.Effects of humidity and sample surface free energy on AFM probe–sample interactions and lateral force microscopy image contrast. Langmuir 25, 3494 (2009)CrossRefGoogle ScholarPubMed
23.Nguyen, T., Gu, X., Chen, L., Fasolka, M., Briggman, K., Hwang, J., Martin, J.Effects of surface functionality and humidity on the adhesion force and chemical contrast measured with AFM. Mater. Res. Soc. Symp. 833E, O15.5 (2005)Google Scholar
24.Hurley, D.C., Kopycinska-Müller, M., Julthongpiput, D., Fasolka, M.J.Influence of surface energy and relative humidity on AFM nanomechanical contact stiffness. Appl. Surf. Sci. 253, 1274 (2006)CrossRefGoogle Scholar
25.Schreiber, F.Self-assembled monolayers: From simple model systems to biofunctionalized interfaces. J. Phys. Condens. Matter 16, R881 (2004)CrossRefGoogle Scholar
26.Vezenov, D.V., Zhuk, A.V., Whitesides, G.M., Lieber, C.M.Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents. J. Am. Chem. Soc. 124, 10578 (2002)CrossRefGoogle ScholarPubMed
27.Brewer, N.J., Leggett, G.J.Chemical force microscopy of mixed self-assembled monolayers of alkanethiols on gold: Evidence for phase separation. Langmuir 20, 4109 (2004)CrossRefGoogle Scholar
28.Israelachvili, J.Intermolecular and Surface Forces 2nd ed. (Academic Press Inc, San Diego 1992)Google Scholar
29.Orr, F.M., Scriven, L.E., Rivas, A.P.Pendular rings between solids: Meniscus properties and capillary force. J. Fluid Mech. 67, 723 (1975)CrossRefGoogle Scholar
30.Wan, K-T., Smith, D.T., Lawn, B.R.Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres. J. Am. Ceram. Soc. 75, 667 (1992)CrossRefGoogle Scholar
31.Marmur, A.Tip-surface capillary interactions. Langmuir 9, 1922 (1993)CrossRefGoogle Scholar
32.de Lazzer, A., Dreyer, M., Rath, H.J.Particle–surface capillary forces. Langmuir 15, 4551 (1999)CrossRefGoogle Scholar
33.Julthongpiput, D., Fasolka, M.J., Zhang, W.H., Nguyen, T., Amis, E.J.Gradient chemical micro patterns: A reference substrate for surface nanometrology. Nano Lett. 5, 1535 (2005)CrossRefGoogle ScholarPubMed
34.Roberson, S.V., Fahey, A.J., Sehgal, A., Karim, A.Multifunctional ToF-SIMS: Combinatorial mapping of gradient energy substrates. Appl. Surf. Sci. 200, 150 (2002)CrossRefGoogle Scholar
35.Wu, S.Polymer Interface and Adhesion 3rd ed. (Marcel Dekker Inc. Press, New York 1982)181Google Scholar
36.Wei, Z., Zhao, Y-P.Growth of liquid bridge in AFM. J. Phys. D: Appl. Phys. 40, 4368 (2007)CrossRefGoogle Scholar
37.Embree, E., Vanlandingham, M.R., Martin, J.W.Humidity chamber for scanning stylus atomic force microscope with cantilever tracking. U.S. Patent No. 6.490.913.B1 (2002)Google Scholar
38.Hackley, V.A., Malghan, S.G.The surface chemistry of silicon nitride powder in the presence of dissolved ions. J. Mater. Sci. 29, 4420 (1994)CrossRefGoogle Scholar
39.Gu, X., Chen, L., Xu, C., Julthongpiput, D., Fasolka, M.J., Nguyen, T.Effect of relative humidity on chemical heterogeneity imaging with atomic force, microscopy , in Nanoscale Phenomena in Functional Materials by Scanning Probe Microscopy edited by L. Degertekin (Mater. Res. Soc. Symp. Proc 1025EWarrendale, PA 2008)1025–B16-10Google Scholar
40.Sirghi, L., Nakamura, M., Hatanaka, Y., Takai, O.Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir 17, 8199 (2001)CrossRefGoogle Scholar
41.Jang, J., Yang, M., Schatz, G.Microscopic origin of the humidity dependence of the adhesion force in atomic force microscopy. J. Chem. Phys. 126, 174705 (2007)CrossRefGoogle ScholarPubMed