Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:45:30.296Z Has data issue: false hasContentIssue false

Effects of silver additions on resistance to thermal shock and delayed failure of YBa2Cu3O7−δ superconductors

Published online by Cambridge University Press:  31 January 2011

J.P. Singh
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. Joo
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
D. Singh
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
T. Warzynski
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
R.B. Poeppel
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The effect of silver (Ag) addition on the resistance to thermal shock and delayed failure of YBa2Cu3O7−δ superconducting wires has been evaluated. Resistance to thermal shock was evaluated by measuring the critical-current density (Jc) as a function of the number of thermal cycles for YBCO and its composites with 15 vol. % Ag additions. Composite YBCO-Ag wires show a slower decrease in Jc than does monolithic YBCO as the number of thermal cycles increases. The nature of delayed failure was studied by measuring strength (σf) as a function of loading rate (σ) and evaluating the value of the subcritical crack growth parameter Nf = Aσ1/(N+1)]. The value of the N parameter was observed to increase slightly from 35 for YBCO to 41 for YBCO-Ag composites. The improved resistance to thermal shock and subcritical crack growth is believed to be due to improvements in mechanical properties (strength and fracture toughness) and thermal conductivity of YBCO as a result of Ag addition.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Singh, J.P., Leu, H.J., Poeppel, R.B., Voorhees, E. Van, Goudey, G.T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
2Hasselman, D. P. H., Ceram. Int. 4, 4 (1978).Google Scholar
3Hasselman, D. P. H., in Materials Science Research, Vol. V, Ceramics in Severe Environments, edited by Kriegel, W. W. and Palmour, H. III, (Plenum Press, New York, 1971), pp. 89183.CrossRefGoogle Scholar
4Kent, C. H., J. Appl. Mech. 54, 185 (1932).Google Scholar
5Coble, R. L. and Kingery, W. D., J. Am. Ceram. Soc. 38, 33 (1955).CrossRefGoogle Scholar
6Crandall, W. B. and Ging, J., J. Am. Ceram. Soc. 38, 55 (1955).CrossRefGoogle Scholar
7Singh, J. P., Niihara, K., and Hasselman, D. P. H., J. Mater. Sci. 16, 2789 (1981).CrossRefGoogle Scholar
8Wiederhorn, S. M., in Fracture Mechanics of Ceramics., edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1974), Vol. 2, p. 613.CrossRefGoogle Scholar
9Virkar, A. V. and Gordon, R. S., J. Am. Ceram. Soc. 59, 68 (1976).CrossRefGoogle Scholar
10Davidge, R. W., McLaren, J. R., and Tappin, G., J. Mater. Sci. 8, 1699 (1973).CrossRefGoogle Scholar
11Ritter, J.E. Jr, and Sherburne, C.L., J. Am. Ceram. Soc. 54, 601 (1971).CrossRefGoogle Scholar
12Singh, J.P., Virkar, A.V., Shetty, D.K., and Gordon, R.S., in Fracture Mechanics of Ceramics., edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1985), Vol. 8, p. 273.Google Scholar
13Singh, J.P., Kullberg, M.L., Poeppel, R.B., Goretta, K.C., and Leu, H. J., Advances in Superconducting Materials and Electronics Technologies, edited by Palmer, D. N. (AES, 1990), Vol. 22, No. G00577.Google Scholar
14Singh, J. P., Shi, D., and Capone, D. W., Appl. Phys. Lett. 53, 3, 18 (1988).Google Scholar
15Singh, J.P., Joo, J., Guttschow, R., and Poeppel, R.B., TCSUH Workshop in HTS Materials, Bulk Processing and Bulk Applications, Houston, TX, February 27-28, 1992 (in press).Google Scholar
16Private communications, report prepared for Argonne National Laboratory by Astronautics Technology Center (1990).Google Scholar
17Nishi, Y., Moriya, S., and Tokunaga, S., J. Mater. Sci. Lett. 7, 596 (1989).CrossRefGoogle Scholar
18Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55, 24 (1989).CrossRefGoogle Scholar
19Lee, D. and Saloma, K., Jpn. J. Appl. Phys. 29, L2017 (1990).CrossRefGoogle Scholar
20Balachandran, U., Poeppel, R.B., Emerson, J.E., Johnson, S.A., Lanagan, M. T., Youngdahl, C. A., Shi, D., Goretta, K. C., and Eror, N. G., Mater. Lett. 8, 454 (1989).CrossRefGoogle Scholar
21Singh, J.P., Guttschow, R.A., Dusek, J.T., and Poeppel, R.B., J. Mater. Res. 7, 2324 (1992).CrossRefGoogle Scholar
22Brown, W.F. Jr, and Srawley, J.E., in American Society for Testing and Materials, Special Technical Publication, 410, 13 (ASTM, Philadelphia, PA, 1966).Google Scholar
23Krautkraumer, J. and Krautkraumer, H., Ultrasonic Testing of Materials (Springer, New York, 1983).CrossRefGoogle Scholar
24Singh, J. P., Kupperman, D. S., Majumdar, S., Hitterman, R. L., and Schroeder, D. W., in Micromechanics of Fracture of Quasi-Brittle Materials, edited by Shah, S.P., Swartz, S.E., and Wang, M.L. (Elsevier Applied Science, New York, 1990), p. 323.Google Scholar
25Kupperman, D.S., Singh, J.P., Faber, J. Jr, and Hitterman, R.L., J. Appl. Phys. 66, 3396 (1989).CrossRefGoogle Scholar
26Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. Van, Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar