Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T16:38:28.207Z Has data issue: false hasContentIssue false

Electronic structure and photoluminescence properties of Eu3+-activated KMPO4 (M = Sr, Ba)

Published online by Cambridge University Press:  31 January 2011

Bitao Liu
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
Get access

Abstract

The electronic structures of KMPO4 (M = Sr, Ba) were calculated by the density functional theory with the local-density approximation. The calculated result shows that KSrPO4 and KBaPO4 are direct-band gap materials with direct energy gaps of 4.52 and 4.35 eV, respectively. Meanwhile, by analyzing the valence band structures of KMPO4 (M = Sr, Ba), the strength of binding of valence band electrons of KBaPO4 is stronger than that of KSrPO4. In addition, the photoluminescence (PL) properties of the intense red-emitting phosphors KM1–xPO4:Eu3+x (M = Sr, Ba) were investigated. The PL emission spectra excited at 393 nm are dominated by the peak at 611 nm due to the forced electric dipole 5D07F2 transition of Eu3+ ions, which is attributed to low local symmetry sites occupied by Eu3+ ions in these hosts. And the optimum integrated intensities for KSr1–xPO4:Eu3+x and KBa1–xPO4:Eu3+x are 1.3 times and 1.1 times of that for commercial Y2O3:Eu3+, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chiu, C.H., Liu, C.H., Huang, S.B., Chen, T.M.White-light-emitting diodes using red-emitting LiEu(WO4)2−x(MoO4)x phosphors. J. Electrochem. Soc. 154, J181 (2007)CrossRefGoogle Scholar
2.Wu, Z., Liu, J., Gong, M., Su, Q.Optimization and temperature-dependent luminescence of LiBaPO4:Eu2+ phosphor for near-UV light-emitting diodes. J. Electrochem. Soc. 156, H153 (2009)CrossRefGoogle Scholar
3.Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., Yamamotoa, H.Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid-State Lett. 9, H22 (2006)CrossRefGoogle Scholar
4.Nakamura, S., Fasol, G.The Blue Laser DiodeGaN Based Light Emitters and Laser (Springer-Verlag, Berlin, Germany 1997)216Google Scholar
5.Won, Y.H., Jang, H.S., Im, W.B., Jeon, D.Y.Red-emitting LiLa2O2BO3:Sm3+, Eu3+ phosphor for near-ultraviolet light-emitting diodes-based solid-state lighting. J. Electrochem. Soc. 155, J226 (2008)CrossRefGoogle Scholar
6.Poort, S.H.M., Janssen, W., Blasse, G.Optical properties of Eu2+-activated orthosilicates and orthophosphates. J. Alloys Compd. 260, 93 (1997)CrossRefGoogle Scholar
7.Tang, Y.S., Hu, S.F., Lin, C.C., Bagkar, N.C., Liu, R.S.Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes. Appl. Phys. Lett. 90, 151108 (2007)CrossRefGoogle Scholar
8.Lin, C.C., Liu, R.S., Tang, Y.S., Hu, S.F.Full-color and thermally stable KSrPO4:Ln (Ln = Eu, Tb, Sm) phosphors for white-light-emitting diodes. J. Electrochem. Soc. 155, J248 (2008)CrossRefGoogle Scholar
9.Im, W.B., Yoo, H.S., Vaidyanathan, S., Kwon, K.H., Park, H.J., Kim, Y.I., Jeon, D.Y.A novel blue-emitting silica-coated KBaPO4:Eu2+ phosphors under vacuum ultraviolet and ultraviolet excitation. Mater. Chem. Phys. 161, 115 (2009)Google Scholar
10.Masse, R., Durif, A.Chemical preparation and crystal structure refinement of KBaPO4 monophosphate. J. Solid State Chem. 71, 574 (1987)CrossRefGoogle Scholar
11.Huang, Y., Kai, W., Cao, Y., Jang, K., Lee, H.S., Kim, I., Cho, E.Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal. J. Appl. Phys. 103, 053501 (2008)CrossRefGoogle Scholar
12.Wang, Z., Liang, H., Gong, M., Su, Q.Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2. Opt. Mater. 29, 896 (2007)CrossRefGoogle Scholar
13.Hohenberg, P., Kohn, W.Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
14.Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
15.Kohn, W., Sham, L.J.Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965)CrossRefGoogle Scholar
16.El Ammari, L., El Koumiri, M., Depmeier, W., Hesse, K.F., Elouadi, B.The crystal structure of the monophosphate KSrPO4. Eur. J. Solid State Inorg. Chem. 34, 563 (1997)Google Scholar
17.Parhi, P., Manivannan, V.Novel microwave initiated solid-state metathesis synthesis and characterization of lanthanide phosphates and vanadates, LMO4 (L = Y, La and M = V, P). Solid State Sci. 10, 1012 (2008)CrossRefGoogle Scholar
18.Huang, Y., Zhao, W., Cao, Y., Jang, K., Lee, H.S., Cho, E., Yi, S.S.Photoluminescence of Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y). J. Solid State Chem. 181, 2161 (2008)CrossRefGoogle Scholar
19.Zhao, X., Wang, X., Chen, B., Meng, Q., Yan, B., Di, W.Luminescent properties of Eu3+ doped a-Gd2(MoO4)3 phosphor for white light emitting diodes. Opt. Mater. 29, 1680 (2007)CrossRefGoogle Scholar
20.Wei, D., Huang, Y., Shi, L., Qiao, X., Seo, H.J.Preparation and luminescence of Eu3+-activated Ca9ZnLi(PO4)7 phosphor by a solid reaction-sintering. J. Electrochem. Soc. 156, H885 (2009)CrossRefGoogle Scholar
21.van der Voort, D., Blasse, G.Luminescence of CaSO4:Bi3+, a small-offset case. J. Solid State Chem. 71, 574 (1987)Google Scholar
22.Dorenbos, P.The Eu3+ charge transfer energy and the relation with the band gap of compounds. J. Lumin. 111, 89 (2005)CrossRefGoogle Scholar
23.Dorenbos, P.Systematic behavior in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417 (2003)CrossRefGoogle Scholar
24.Li, L., Zhang, S.Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds. J. Phys. Chem. B 110, 21438 (2006)CrossRefGoogle ScholarPubMed
25.Li, L., Zhou, S., Zhang, S.Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds. J. Phys. Chem. C 111, 3205 (2007)CrossRefGoogle Scholar
26.Hoefdraad, H.E.The charge-transfer absorption band of Eu3+ in oxides. J. Solid State Chem. 15, 175 (1975)CrossRefGoogle Scholar
27.Blasse, G.Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444 (1968)CrossRefGoogle Scholar
28.Dexter, D.L.A theory sensitized fluorescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar