Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T17:23:50.908Z Has data issue: false hasContentIssue false

Enhanced electroluminescence performance of all-inorganic quantum dot light-emitting diodes: A promising candidate for hole transport layer of Cu-doped NiO nanocrystals

Published online by Cambridge University Press:  29 April 2019

Yi-Dong Zhang*
Affiliation:
Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000, People’s Republic of China
Lei Zhao
Affiliation:
School of Electronic and Information Engineering, Lanzhou City University, Lanzhou, Gansu Province 730070, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zyd630@126.com
Get access

Abstract

Fabrication and characterization of solution-processed, all-inorganic quantum dots (QDs) light-emitting diodes (QLEDs) incorporating colloidal CdSe/ZnS QDs are presented. Using a simple solvothermal process, Cu-doped NiO nanocrystals were fabricated and applied as a hole transport layer in all inorganic QLEDs. Cu-doped NiO nanocrystals are ascribed to bunsenite cubic structure. The transmittance of the film is more than 81%. The hole-only devices of Au/QDs/Cu–NiO/ITO structures showed that 5% mol Cu doped NiO film obtained the largest hole current. The resulting devices show pure QD electroluminescent emissions with a maximum electroluminescence brightness of 2258 cd/m2 after doping 5% mol Cu in NiO, which is almost 4-fold compared with that of intrinsic NiO due to the enhanced carrier concentration and conductivity. The current efficiency and EQE of the assembled all-inorganic QLED exhibited the maximum values of 1.18 cd/A and 1.223%, respectively.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Colvin, V.L., Schlamp, M.C., and Allvisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature 370, 354356 (1994).CrossRefGoogle Scholar
Huang, Q.Q., Pan, J.Y., Zhang, Y.N., Chen, J., Tao, Z., He, C., Zhou, K.F., Tu, Y., and Lei, W.: High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering. Opt. Express 24, 2595525963 (2016).CrossRefGoogle ScholarPubMed
Pan, J.Y., Chen, J., Zhao, D.W., Huang, Q.Q., Khan, Q., Liu, X., Tao, Z., Zhang, Z.C., and Lei, W.: Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. Opt. Express 24, A33A43 (2016).CrossRefGoogle ScholarPubMed
Liang, H.W., Zhu, R.D., and Dong, Y.J.: Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern. Opt. Express 23, 1291012922 (2015).CrossRefGoogle ScholarPubMed
Jo, J.H., Kim, J.H., Lee, K.H., Han, C.Y., Jang, E.P., Do, Y.R., and Yang, H.S.: High-efficiency red electroluminescent device based on multishelled InP quantum dots. Opt. Lett. 41, 39843987 (2016).CrossRefGoogle ScholarPubMed
Caruge, J.M., Halpert, J.E., Wood, V., Bulovic, V., and Bawendi, M.G.: Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2, 247250 (2008).CrossRefGoogle Scholar
Mashford, B.S., Nguyen, T.L., Wilson, G.J., and Mulvaney, P.: All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J. Mater. Chem. 20, 167172 (2010).CrossRefGoogle Scholar
Li, J.H., Shao, Y.L., Chen, X.C., Wang, H.Z., Li, Y.G., and Zhang, Q.H.: All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer. Prog. Nat. Sci.: Mater. Int. 26, 503509 (2016).CrossRefGoogle Scholar
Zhang, Y.D., Zuo, J.X., Li, P.J., Gao, Y.H., He, W.W., and Zheng, Z.: Study of the nanoscale electrical performance of NiO thin films by C-AFM and KPFM techniques: The effect of grain boundary barrier. Phys. E 111, 7578 (2019).CrossRefGoogle Scholar
Shi, C.X., Ren, W.J., and Zhang, Z.D.: Composition-mediated long-range-order transition from AFM to FM in LixNi2−xO2 solid solutions. Phys. B 447, 7076 (2014).CrossRefGoogle Scholar
Jang, W.L., Lu, Y.M., Hwang, W.S., Hsiung, T.L., and Wang, H.P.: Point defects in sputtered NiO films. Appl. Phys. Lett. 94, 062103062105 (2009).CrossRefGoogle Scholar
Wood, V., Panzer, M.J., Halpert, J.E., Caruge, J.M., Bawendi, M.G., and Bulovic, V.: Selction of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3, 35813586 (2009).CrossRefGoogle Scholar
Wood, V., Panzer, M.J., Caruge, J.M., Halpert, J.E., Bawendi, M.G., and Bulovic, V.: Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10, 2429 (2010).CrossRefGoogle ScholarPubMed
Nguyen, H.T., Jeong, H., Park, J.Y., Ahn, Y.H., and Lee, S.: Charge transport in light emitting devices based on colloidal quantum dots and a solution-processed nickel oxide layer. ACS Appl. Mater. Interfaces 6, 72867291 (2014).CrossRefGoogle Scholar
Jang, W.L., Lu, Y.M., Hwang, W.S., and Chen, W.C.: Electrical properties of Li-doped NiO films. J. Eur. Ceram. Soc. 30, 503508 (2010).CrossRefGoogle Scholar
Yang, M., Pu, H.F., Zhou, Q.F., and Zhang, Q.: Transparent p-type conducting K-doped NiO films deposited by pulsed plasma deposition. Thin Solid Films 520, 58845888 (2012).CrossRefGoogle Scholar
Fominykh, B.K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Doblinger, M., Muler, A., Pokharel, A., Bocklein, S., Scheu, C., Bein, T., and Rohifing, D.F.: Iron-doped nickel oxide nanocrystals as highly-efficient electrocatalysts for alkaline water splitting. ACS Nano 9, 51805188 (2015).CrossRefGoogle ScholarPubMed
Zhao, L.L., Su, G., Liu, W., Cao, L.X., Wang, J., Dong, Z., and Song, M.Q.: Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition. Appl. Surf. Sci. 257, 39743979 (2011).CrossRefGoogle Scholar
Yang, M., Shi, Z., Feng, J.H., Pu, H.F., Li, G.F., Zhou, J., and Zhang, Q.: Copper doped nickel oxide transparent p-type conductive thin films deposited by pulsed plasma deposition. Thin Solid Films 519, 30213025 (2011).CrossRefGoogle Scholar
Kim, J.H., Liang, P.W., Williams, S.T., Cho, N., Chueh, C.C., Glaz, M.S., Ginger, D.S., and Jen, A.K.Y.: High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-prcessed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695701 (2015).CrossRefGoogle ScholarPubMed
Kim, M., Joo, C.W., Kim, J.H., Choi, W., Lee, J., Lee, D., Cho, H., Lee, H., Park, S., Cho, N.S., Cho, H., Lee, C.W., Jeon, D.Y., and Kwon, B.H.: Conductivity enhancement of nickel oxide by copper cation codoping for hybrid organic–inorganic light-emitting diodes. ACS Photonics 5, 33893398 (2018).CrossRefGoogle Scholar
Manouchehri, I., Mehrparvar, D., Moradian, R., Gholami, K., and Osati, T.: Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering. Optik 127, 81248129 (2016).CrossRefGoogle Scholar
Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosona, H.: p-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939942 (1997).CrossRefGoogle Scholar
Park, Y.R., Doh, J.H., Shin, K., Seo, Y.S., Kim, Y.S., Kim, S.Y., Choi, W.K., and Hong, Y.J.: Solution-processed quantum dot light-emitting diodes with PANI:PSS hole-transport inteerlayers. Org. Electron. 19, 131139 (2015).CrossRefGoogle Scholar
Supplementary material: File

Zhang and Zhao supplementary material

Zhang and Zhao supplementary material 1

Download Zhang and Zhao supplementary material(File)
File 2.9 MB