Article contents
Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation
Published online by Cambridge University Press: 17 January 2020
Abstract
The development of GaN-on-diamond devices offers bright prospects for the creation of high-power density electronics. This article presents a process of fabricating GaN-on-diamond structure by depositing diamond films on dual sides, including heat dissipation diamond film and sacrificial carrier diamond film. Prior to heat dissipation diamond film layer preparation, aluminum nitride (AlN) is chosen as a dielectric layer and pretreated by nanodiamond (ND) particles, to enhance the nucleation density. Zeta potential measurements and X-ray photoelectron spectroscopy are used to analyze the AlN surface after each treatment. The results show that oxygen-terminated ND particles tend to adhere to an AlN surface because the oxygen-terminated NDs have –COOH and –OH groups, and hold a negative potential. On the contrary, fluorine-terminated AlN prefers to attract the hydrogen-terminated ND seeds, which resulted in higher diamond nucleation density. Based on this preliminary study, a dense high-quality GaN-on-diamond wafer is successfully produced by using AlN as the dielectric layer and a diamond film as the sacrificial carrier.
Keywords
- Type
- Article
- Information
- Journal of Materials Research , Volume 35 , Issue 5: Focus Issue: The Science and Technology of Vapor Phase Processing and Modification of Surfaces , 16 March 2020 , pp. 508 - 515
- Copyright
- Copyright © Materials Research Society 2020
Footnotes
This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.
References
- 8
- Cited by