Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T03:18:20.110Z Has data issue: false hasContentIssue false

Epitaxial growth of gadolinium oxide on roll-textured nickel using a solution growth technique

Published online by Cambridge University Press:  31 January 2011

Jonathan S. Morrell
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
Ziling B. Xue
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
Eliot D. Specht
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Amit Goyal
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Patrick M. Martin
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Dominic F. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. Feenstra
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. T. Verebelyi
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Thomas G. Chirayil
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Mariappan Paranthaman
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Catherine E. Vallet
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
David B. Beach*
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author.
Get access

Abstract

Chemical solution epitaxy was used to deposit an epitaxial film of Gd2O3 on roll-textured nickel. A 2-methoxyethanol solution of gadolinium methoxyethoxide was used for spin-coating and dip-coating. Films were crystallized using a heat treatment at 1160 °C for 1 h in 4% H2/96% Ar. Single-layer films were approximately 600 Å in thickness, and thicker films could be produced using multiple coatings. θ/2θ x-ray diffractograms revealed only (0041) reflections, indicating a high degree of out-of-plane texture. A pole-figure about the Gd2O3 (222) reflection indicated a single in-plane epitaxy. Scanning electron microscopy showed that the films were smooth, continuous, and free of pin holes. Atomic force microscopy revealed an average surface roughness of 53 Å. Electron diffraction indicated that the misalignment of the majority of the grains in the plane was less than 10°. High-current (0.4 MA/cm2) Yba2Cu3O7–δ films were grown on roll-textured nickel substrates using Gd2O3 as the base layer in a three-layer buffer structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.MacManus-Driscoll, J.L., Annu. Rev. Mater. Sci. 28, 421 (1998).Google Scholar
2.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev B 41, 4038 (1990).Google Scholar
3.Iijima, Y., Tanabe, N., and Kohno, O., Proc. 4th Int. Symp. Super-cond. (ISS) (Springer Verlag, Tokyo, Japan, 1992), p. 679.Google Scholar
4.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).Google Scholar
5.Goyal, A., Norton, D.P., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Siska, V.K., Appl. Phys. Lett. 69, 1795 (1996).Google Scholar
6.Norton, D.P., Park, C., Prouteau, C., Christen, D.K., Chisholm, M.F., Budai, J. D., Pennycook, S.J., Goyal, A., Sun, E.Y., Lee, D.F., Kroeger, D.M., Specht, E., Paranthaman, M., and Browning, N.D., Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 56, 86 (1998).Google Scholar
7.Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Q., Christen, D.K., Norton, D.P., Budai, J.D., and Kroeger, D.M., Physica C 275, 266 (1997).Google Scholar
8.Lee, D.F., Paranthaman, M., Mathis, J.E., Goyal, A., Kroeger, D.M., Specht, E.D., Williams, R.K., List, F.A., Martin, P.M., Park, C., Norton, D.P., and Christen, D.K., Jpn. J. Appl. Phys. 2 38, L178 (1999).Google Scholar
9.Paranathaman, M., Lee, D.F., Goyal, A., Specht, E.D., Martin, P.M., Cui, X., Mathis, J.E., Feenstra, R., Christen, D.K., and Kroeger, D.M., Supercond. Sci. Technol. 12, 319 (1999).Google Scholar
10.Shoup, S.S., Paranthaman, M., Goyal, A., Specht, E.D., Lee, D.F., Kroeger, D.M., and Beach, D.B., J. Am. Ceram. Soc. 81, 3019 (1998).Google Scholar
11.Beach, D.B., Vallet, C.E., Paranthaman, M., Specht, E.D., Morrell, J.S., and Xue, Z.B., in Chemical Aspects of Electronic Ceramics Processing, edited by Kumta, P.N., Hepp, A.F., Beach, D.B., Arkles, B., and Sullivan, J.J. (Mater. Res. Soc. Symp. Proc. 495, Warrendale, PA, 1998), p. 263.Google Scholar
12.Brown, L.M. and Mazidiyansi, K.S., Inorg. Chem. 9, 2783 (1990).Google Scholar
13. Powder Diffraction File, Card No. 12–0797, International Center for Diffraction Data.Google Scholar
14.Goyal, A., Specht, E.D., Wang, Z.L., and Kroeger, D.M., Ultramicroscopy 67, 35 (1997).CrossRefGoogle Scholar
15.Paranthaman, M., List, F.A., Lee, D.F., Goyal, A., Feenstra, R., Norton, D.P., Park, C., Verebelyi, D.T., Christen, D.K., Martin, P.M., Specht, E.D., and Kroeger, D.M., in Science and Engineering of HTC Superconductivity, Advances in Science and Technology 23, edited by Vincenzi, P. (Techna Srl, Faenza, Italy, 1999), p. 185.Google Scholar