Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T05:55:01.793Z Has data issue: false hasContentIssue false

Excitation frequency effects on rf magnetron sputtering of YBa2Cu3O7−δ thin films

Published online by Cambridge University Press:  31 January 2011

N. Homma
Affiliation:
Superconductivity Research Laboratory, ISTEC, 13-10 Shinonome 1–chome, Koto-ku, Tokyo 135, Japan
H. Takahashi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 13-10 Shinonome 1–chome, Koto-ku, Tokyo 135, Japan
S. Okayama
Affiliation:
Superconductivity Research Laboratory, ISTEC, 13-10 Shinonome 1–chome, Koto-ku, Tokyo 135, Japan
T. Morishita
Affiliation:
Superconductivity Research Laboratory, ISTEC, 13-10 Shinonome 1–chome, Koto-ku, Tokyo 135, Japan
S. Tanaka
Affiliation:
Superconductivity Research Laboratory, ISTEC, 13-10 Shinonome 1–chome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Effects of an excitation frequency on on-axis rf magnetron sputtering have been studied for fabrication of YBa2Cu3O7−δ thin films on MgO (100). The excitation frequencies examined are 13.56, 40.68, 67.80, and 94.92 MHz. Sputtering was performed in a pure argon gas in order to distinguish excitation frequency effects of oxygen emitted from a target from those of oxygen in a mixture atmosphere. Excitation frequencies higher than 40.68 MHz result in both a low self-bias voltage and a narrow distribution of the energy of sputtering ions, which reduce resputtering of a film surface caused by negatively charged oxygen from the target. Thin films of a-axis oriented YBa2Cu3O7−δ deposited at 94.92 MHz have shown better morphology and crystallinity than those at lower excitation frequencies under the same conditions. Furthermore, a-axis oriented superconductive YBa2Cu3O7−δ films have successfully sputtered in 200 mTorr atmosphere of argon and oxygen on SrTiO3 (100) by using an excitation frequency of 94.92 MHz, showing a full width at half maximum of 0.1° in the rocking curve through the (100) peak and a very smooth surface. The zero resistance temperature is, at most, 33 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xi, X.X., Linker, G., Meyer, O., Nold, E., Obst, B., Ratzel, F., Smithey, R., Strehlau, B., Weschenfelder, F., and Geerk, J., Z. Phys. B 74, 13 (1989).CrossRefGoogle Scholar
2.Inam, A., Hegde, M.S., Wu, X.D., Venkatesan, T., England, P., Miceli, P. F., Chase, E. W., Chang, C. C., Tarascon, J. M., and Wachtman, J. B., .Appl. Phys. Lett. 53, 908 (1988).CrossRefGoogle Scholar
3.Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
4.Chern, C. S., Zhao, J., Li, Y. Q., Norris, P., Kear, B., and Gallois, B., Appl. Phys. Lett. 57, 721 (1990).CrossRefGoogle Scholar
5.Shah, S.I. and Carcia, P.F., Appl. Phys. Lett. 51, 2146 (1987).CrossRefGoogle Scholar
6.Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S.S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
7.Migliuolo, M., Belan, R. M., and Brewer, J. A., Appl. Phys. Lett. 56, 2572 (1990).CrossRefGoogle Scholar
8.Ohmi, T., Kuwabara, H., Shibata, T., and Kiyota, T., in ULSI Science and Technology/1988 edited by Broydo, S. and Osburn, C M. (Electrochemical Society, Pennington, NJ, 1987), Proc. 12. A.D. Kuypers and H. J. Hopman, J. Appl. Phys. 67, 1229 (1990). Vol. 87–11, pp. 574–592.Google Scholar
9.Takahashi, H., Homma, N., Kawamoto, S., Kondo, H., Suzuki, K., and Morishita, T. n Proc. 2nd Int. Symp. on Superconductivity, Tsukuba, 1989, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), p. 793.Google Scholar
10.Takahashi, H., Homma, N., Suzuki, K., Morishita, T., and Tanaka, S., in Program & Abstracts of the 2nd ISTEC Workshop on Superconductivity Kagoshima, 1990, p. 21.Google Scholar
11.Homma, N., Takahashi, H., Kawamoto, S., Kondo, H., Suzuki, K., Morishita, T., and Tanaka, S., presented at the Spring MRS Meeting, Symposium D, San Francisco, April, 1990.Google Scholar
12.Ohmi, T., Ichikawa, T., and Shibata, T., J. Appl. Phys. 67, 1229 (1990)Google Scholar
13.Ohmi, T., Ichikawa, T., and Shibata, T., J. Appl. Phys. 66, 4756 (1989).CrossRefGoogle Scholar
14.Yeh, J. J., Hong, M., and Felder, R.J., Appl. Phys. Lett. 54, 1163 (1989)CrossRefGoogle Scholar
15.Homma, N., Okayama, S., Takahashi, H., Yoshida, I., Morishita, T. and Tanaka, S., Appl. Phys. Lett. 59, 1383 (1991)CrossRefGoogle Scholar