Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T22:37:03.518Z Has data issue: false hasContentIssue false

Fabrication of submicrometer-grained Zn–22% Al by torsion straining

Published online by Cambridge University Press:  31 January 2011

Minoru Furukawa
Affiliation:
Department of Technology, Fukuoka University of Education, Munakata, Fukuoka 811–41, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812–81, Japan
Minoru Nemoto
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812–81, Japan
Ruslan Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089–1453
Get access

Abstract

The Zn–22% Al eutectoid alloy is capable of exhibiting very high superplastic elongations, in excess of 2000% in tension, when the grain size is in the range of ∼ 1–10 μm. This paper describes the fabrication of a submicrometer grain size in the Zn–22% Al alloy by subjecting the samples to intense plastic straining in torsion under high pressure (∼5 GPa) at room temperature. Observations after straining revealed a heterogeneous microstructure with grain sizes in the range of ∼0.1–0.5 μm. As a result of the low melting temperature of the alloy, the high internal stresses introduced by torsion straining are relaxed and the grain boundaries are close to an equilibrium configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishikawa, H., Mohamed, F. A., and Langdon, T. G., Philos. Mag. 32, 1269 (1975).CrossRefGoogle Scholar
2.Mohamed, F. A., Ahmed, M.M.I., and Langdon, T.G., Metall. Trans. 8A, 933 (1977).CrossRefGoogle Scholar
3.Valiev, R. Z., Kaibyshev, O. A., Kuznetsov, R. I., Musalimov, R. Sh., and Tsenev, N. K., Dokl. Akad. Nauk SSSR 301, 864 (1988).Google Scholar
4.Valiev, R. Z., Korznikov, A. V., and Mulyukov, R. R., Mater. Sci. Eng. A168, 141 (1993).CrossRefGoogle Scholar
5.Valiev, R. Z., in Strength of Materials: Proc. 10th Int. Conf. on the Strength of Materials, edited by Oikawa, H., Maruyama, K., Takeuchi, S., and Yamaguchi, M. (The Japan Institute of Metals, Sendai, Japan, 1994), p. 765.Google Scholar
6.Islamgaliev, R. K., Chmelik, F., Gibadullin, L. F., Biegel, W., and Valiev, R. Z., Nanostruct. Mater. 4, 387 (1994).CrossRefGoogle Scholar
7.Mohamed, F. A. and Langdon, T. G., Acta Metall. 23, 117 (1975).Google Scholar
8.Mohamed, F. A., Shei, S-A., and Langdon, T. G., Acta Metall. 23, 1443 (1975).Google Scholar
9.Ishikawa, H., Bhat, D. G., Mohamed, F. A., and Langdon, T. G., Metall. Trans. 8A, 523 (1977).Google Scholar
10.Ahmed, M.M.I., Mohamed, F. A., and Langdon, T. G., J. Mater. Sci. 14, 2913 (1979).Google Scholar
11.Shariat, P., Vastava, R. B., and Langdon, T. G., Acta Metall. 30, 285 (1982).Google Scholar
12.Lin, Z-R., Chokshi, A. H., and Langdon, T. G., J. Mater. Sci. 23, 2712 (1988).CrossRefGoogle Scholar
13.Valiev, R. Z., Krasilnikov, N. A., and Tsenev, N. K., Mater. Sci. Eng. A137, 35 (1991).CrossRefGoogle Scholar
14.Horita, Z., Smith, D. J., Furukawa, M., Nemoto, M., Valiev, R. Z., and Langdon, T. G., J. Mater. Res. 11, 1880 (1996).Google Scholar
15.Nicholson, R. B., in Electron Microscopy and Structure of Materials, edited by Thomas, G. (University of California Press, Berkeley, CA, 1972), p. 689.Google Scholar