Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T08:55:07.608Z Has data issue: false hasContentIssue false

First-principles study on mechanical properties and electronic structures of Ti–Al intermetallic compounds

Published online by Cambridge University Press:  04 February 2019

Wenjun Huang*
Affiliation:
College of Energy Engineering, Yulin University, Yulin, Shaanxi Province 719000, People’s Republic of China
Fenjun Liu
Affiliation:
College of Energy Engineering, Yulin University, Yulin, Shaanxi Province 719000, People’s Republic of China; State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Jianbo Liu
Affiliation:
College of Energy Engineering, Yulin University, Yulin, Shaanxi Province 719000, People’s Republic of China; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province 710048, People’s Republic of China
Yaofei Tuo
Affiliation:
College of Energy Engineering, Yulin University, Yulin, Shaanxi Province 719000, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: xiaohuang20180909@163.com
Get access

Abstract

In this study, we investigated the elastic constants, moduli, hardness, and electronic structures of Ti–Al intermetallic compounds (TiAl, Ti3Al, and TiAl3) using first-principles calculations. The cohesive energy and formation enthalpy of these compounds are negative, which indicates that they are thermodynamically stable. We calculated the elastic constants and moduli using the stress–strain method and Voigt–Reuss–Hill approximation, respectively. We evaluated the mechanical anisotropy of these compounds using the anisotropic index and found that the results are in good agreement with other experimental and theoretical data. We evaluated the chemical bonding of these compounds by calculating their density of states, the results of which revealed that the bonding behavior of all Ti–Al intermetallic compounds involved a mixture of metallic and covalent bonds. We also estimated the Debye temperature and sound velocities of these Ti–Al intermetallic compounds.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hong, T., Watsonyang, T.J., Freeman, A.J., Oguchi, T., and Xu, J.: Crystal structure, phase stability, and electronic structure of Ti–Al intermetallics: TiAl3. Phys. Rev. B 41, 12462 (1990).CrossRefGoogle ScholarPubMed
Chubb, S.R., Papaconstantopoulos, D.A., and Klein, B.M.: First-principles study of L10 Ti–Al and V–Al alloys. Phys. Rev. B 38, 12120 (1988).CrossRefGoogle ScholarPubMed
Mishin, Y. and Herzig, C.: Diffusion in the Ti–Al system. Acta Mater. 48, 589 (2000).CrossRefGoogle Scholar
Asta, M., De Fontaine, D., and Van Schilfgaarde, M.: First-principles study of phase stability of Ti–Al intermetallic compounds. J. Mater. Res. 8, 2554 (2011).CrossRefGoogle Scholar
Fleischer, R.L., Dimiduk, D.M., and Lipsitt, H.A.: Intermetallic compounds for strong high-temperature materials: Status and potential. Annu. Rev. Mater. Sci. 19, 231 (1989).CrossRefGoogle Scholar
Yamaguchi, M. and Umakoshi, Y.: The deformation behaviour of intermetallic superlattice compounds. Prog. Mater. Sci. 34, 1 (1990).CrossRefGoogle Scholar
Kattner, U.R., Lin, J-C., and Chang, Y.A.: Thermodynamic assessment and calculation of the Ti–Al system. Metall. Trans. A 23, 2081 (1992).CrossRefGoogle Scholar
Ren, J.W., Li, Y.J., and Feng, T.: Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater. Lett. 56, 647 (2002).Google Scholar
Asta, M., De Fontaine, D., Van Schilfgaarde, M., Sluiter, M., and Methfessel, M.: First-principles phase-stability study of fcc alloys in the Ti–Al system. Phys. Rev. B 46, 5055 (1992).CrossRefGoogle ScholarPubMed
Wróbel, J., Hector, L.G., Wolf, W., Shang, S.L., Liu, Z.K., and Kurzydłowski, K.J.: Thermodynamic and mechanical properties of lanthanum–magnesium phases from density functional theory. J. Alloys Compd. 512, 296 (2012).CrossRefGoogle Scholar
Hector, L.G., Herbst, J.F., Wolf, W., Saxe, P., and Kresse, G.: Ab initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides. Phys. Rev. B 76, 014121 (2007).CrossRefGoogle Scholar
Song, Y., Guo, Z.X., and Yang, R.: First principles studies of TiAl-based alloys. J. Light Met. 2, 115 (2002).CrossRefGoogle Scholar
Qi, C., Jiang, Y., Liu, Y., and Zhou, R.: Elastic and electronic properties of XB2 (X = V, Nb, Ta, Cr, Mo, and W) with AlB2 structure from first principles calculations. Ceram. Int. 40, 5843 (2014).CrossRefGoogle Scholar
Duan, Y.H., Ma, L.S., Li, P., and Cao, Y.: First-principles calculations of electronic structures and optical, phononic, and thermodynamic properties of monoclinic α-spodumene. Ceram. Int. 43, 6312 (2017).Google Scholar
Wen, Z., Hou, H., Tian, J., Zhao, Y., Li, H., and Han, P.: First-principles investigation of martensitic transformation and magnetic properties of Ni2XAl (X = Cr, Fe, Co) Heusler compounds. Intermetallics 92, 15 (2018).CrossRefGoogle Scholar
Duwez, P. and Taylor, J.L.: Crystal structure of TiAl. JOM 4, 70 (1952).CrossRefGoogle Scholar
Penaloza, V.A. and Houska, C.R.: Refinements on the X-ray intensities from Ti3–2Al. An. Congr. Nac. Metal. 1983, 54 (1983).Google Scholar
Patil, S.K.R., Khare, S.V., Tuttle, B.R., Bording, J.K., and Kodambaka, S.: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B 73, 104118 (2006).CrossRefGoogle Scholar
Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: Mechanical properties and chemical bonding characteristics of WC and W2C compounds. Ceram. Int. 40, 2891 (2014).CrossRefGoogle Scholar
Liu, Y., Xing, J., Fu, H., Li, Y., Sun, L., and Lv, Z.: Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. Phys. Lett. A 381, 2648 (2017).CrossRefGoogle Scholar
Liu, Y., Xing, J., Li, Y., Tan, J., Sun, L., and Yan, J.: Mechanical properties and anisotropy of thermal conductivity of Fe3−xCrxO4 (x = 0–3). J. Mater. Res. 31, 3805 (2016).CrossRefGoogle Scholar
Liu, Y., Chong, X., Jiang, Y., Zhou, R., and Feng, J.: Mechanical properties and electronic structures of Fe–Al intermetallic. Phys. B 506, 1 (2017).CrossRefGoogle Scholar
Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf, and Ta) compounds. J. Alloys Compd. 582, 500 (2014).CrossRefGoogle Scholar
Wu, Z.J., Zhao, E.J., Xiang, H.Q., Hao, X.F., Liu, X.J., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).CrossRefGoogle Scholar
Tanaka, K.: Single-crystal elastic constants of gamma-TiAl. Philos. Mag. Lett. 73, 71 (1996).CrossRefGoogle Scholar
Tanaka, K., Okamoto, K., Inui, H., Minonishi, Y., Yamaguchi, M., and Koiwa, M.: Elastic constants and their temperature dependence for the intermetallic compound Ti3Al. Philos. Mag. A 73, 1475 (1996).CrossRefGoogle Scholar
Nakamura, M. and Kimura, K.: Elastic constants of TiAl3 and ZrAl3 single crystals. J. Mater. Sci. 26, 2208 (1991).CrossRefGoogle Scholar
Jiang, X., Zhao, J., and Jiang, X.: Correlation between hardness and elastic moduli of the covalent crystals. Comput. Mater. Sci. 50, 2287 (2011).CrossRefGoogle Scholar
Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J., and Eriksson, O.: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
Xiao, B., Feng, J., Zhou, C.T., Jiang, Y.H., and Zhou, R.: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys. 109, 083521 (2011).CrossRefGoogle Scholar
Feng, J., Xiao, B., Zhou, R., Pan, W., and Clarke, D.R.: Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd, or Dy) natural superlattice structure. Acta Mater. 60, 3380 (2012).CrossRefGoogle Scholar
Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: First-principles calculations of the mechanical and electronic properties of Fe–W–C ternary compounds. Comput. Mater. Sci. 82, 26 (2014).CrossRefGoogle Scholar
Richardson, R.C.D.: The wear of metals by hard abrasives. Wear 10, 291 (1967).CrossRefGoogle Scholar
Tian, Y., Xu, B., and Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).CrossRefGoogle Scholar
Feng, J., Xiao, B., Chen, J., Du, Y., Yu, J., and Zhou, R.: Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des. 32, 3231 (2011).CrossRefGoogle Scholar
Sun, L., Gao, Y., Yoshida, K., Yano, T., Li, Y., and Liu, Y.: Structural, mechanical, thermal and electronic properties of novel ternary carbide Al4Si2C5 under high pressure by DFT calculation. Int. J. Mod. Phys. B 31, 1750012 (2017).CrossRefGoogle Scholar
He, T.W., Jiang, Y.H., Zhou, R., and Feng, J.: The electronic structure, mechanical and thermodynamic properties of Mo2XB2 and MoX2B4 (X = Fe, Co, Ni) ternary borides. J. Appl. Phys. 118, 075902 (2015).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1998).CrossRefGoogle Scholar
Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 131, 233 (1997).CrossRefGoogle Scholar
Liu, Y., Jiang, Y., Xing, J., Zhou, R., and Feng, J.: Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. J. Alloys Compd. 648, 874 (2015).CrossRefGoogle Scholar
Li, Y., Gao, Y., Fan, Z., Xiao, B., Yue, Q., Min, T., and Ma, S.: First-principles study on the stability and mechanical property of eta M3W3C (M = Fe, Co, Ni) compounds. Phys. B 405, 1011 (2010).CrossRefGoogle Scholar