Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T20:20:51.779Z Has data issue: false hasContentIssue false

Flat interfaces in zinc oxide-based varistor ceramics

Published online by Cambridge University Press:  31 January 2011

Gun Yong Sung*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Stuart McKernan*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
C. Barry Carter*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
*
a)Present address: Advanced Technology Department, Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon, 302-350, Korea.
b)Present address: Department of Chemical Engineering and Materials Science, Amundson Hall, University of Minnesota, Minneapolis, Minnesota. Address correspondence to C. Barry Carter.
b)Present address: Department of Chemical Engineering and Materials Science, Amundson Hall, University of Minnesota, Minneapolis, Minnesota. Address correspondence to C. Barry Carter.
Get access

Abstract

Four types of structurally different, flat interfaces have been observed in ZnO-based varistor ceramics containing metal-oxides additives (Bi, Mn, and Ti) by bright-field and high-resolution imaging in a transmission electron microscope. Orientation relationships have been characterized by selected-area diffraction. The faceting of ZnO grains when in contact with β–Bi2O3 is discussed in relation to the anisotropic growth of the ZnO grains which leads to pronounced faceting parallel to (0001) planes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
2.Morris, W. G., J. Vac. Sci. Technol. 13, 926 (1976).CrossRefGoogle Scholar
3.Clarke, D. R., J. Appl. Phys. 49, 2407 (1978).CrossRefGoogle Scholar
4.Kingery, W. D., Sande, J. B. Vander, and Mitamura, T., J. Am. Ceram. Soc. 62, 221 (1979).CrossRefGoogle Scholar
5.Wong, J., J. Appl. Phys. 46, 1653 (1975).CrossRefGoogle Scholar
6.Inada, M., Jpn. J. Appl. Phys. 17, 1 (1978).CrossRefGoogle Scholar
7.Olsson, E., Falk, L. K. L., Dunlop, G. L., and Osterlund, R., J. Mater. Sci. 20, 4091 (1985).Google Scholar
8.Beranasconi, J., Strassler, S., Knecht, B., Klein, H. P., and Menth, A., Solid State Commun. 21, 867 (1977).CrossRefGoogle Scholar
9.Eda, K., J. Appl. Phys. 50, 4436 (1979).CrossRefGoogle Scholar
10.Mahan, G. D., Levinson, L. M., and Philipp, H. R., Appl. Phys. Lett. 33, 830 (1978).Google Scholar
11.Hower, P. L. and Gupta, T. K., J. Appl. Phys. 50, 4847 (1979).CrossRefGoogle Scholar
12.Kolar, D. R., Pejovnik, S., and Ristic, M. M., Sintering—Theory and Practice (Elsevier Scientific Publishing Co., Amsterdam, The Netherlands, 1982), p. 367.Google Scholar
13.Gambino, J. P., Kingery, W. D., Pike, G. E., Levinson, L. M., and Philipp, H. R., J. Am. Ceram. Soc. 72, 642 (1989).Google Scholar
14.Olson, E. and Dunlop, G. L., J. Appl. Phys. 66, 3666 (1989).CrossRefGoogle Scholar
15.Olson, E. and Dunlop, G. L., J. Appl. Phys. 66, 4317 (1989).CrossRefGoogle Scholar
16.Eda, K., Inada, M., and Matsuoka, M., J. Appl. Phys. 54, 1099 (1983).CrossRefGoogle Scholar
17.Yan, M. F. and Heuer, A. H., Additives and Interfaces in Electronic Ceramics (American Ceramic Society, Westerville, OH, 1983), p. 107.Google Scholar
18.Bowen, L. J. and Avella, F. J., J. Appl. Phys. 54, 2764 (1983).CrossRefGoogle Scholar
19.Snow, F. S., White, S. S., Cooper, R. A., and Amijo, J. R., Am. Ceram. Soc. Bull. 59, 617 (1980).Google Scholar
20.Lauf, R. J. and Bond, W. D., Am. Ceram. Soc. Bull. 63, 278 (1984).Google Scholar
21.Sonder, E., Quinby, T. C., and Kinser, D. L., Am. Ceram. Soc. Bull. 65, 665 (1986).Google Scholar
22.Wong, J., Rao, P., and Koch, E. H., J. Appl. Phys. 46, 1827 (1975).Google Scholar
23.Sung, G. Y. and Kim, C. H., Adv. Ceram. Mater. 3, 604 (1988).Google Scholar
24.Sung, G. Y., Kim, C. H., and Oh, M. H., Adv. Ceram. Mater. 2, 841 (1987).Google Scholar
25.Safronov, G. M., Batog, V. N., Stepanyuk, T. V., and Pedorov, P. M., Russ. J. Inorg. Chem. (Engl. Transl.) 16, 460 (1971).Google Scholar
26.Medernach, J. W. and Snyder, R. L., J. Am. Ceram. Soc. 61, 494 (1978).Google Scholar
27.Levin, E. M. and Roth, R. S., J. Res. Natl. Bur. Stand. Sect. A. 68, 189 (1964).Google Scholar