Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T18:41:43.671Z Has data issue: false hasContentIssue false

Fracture modes in brittle coatings with large interlayer modulus mismatch

Published online by Cambridge University Press:  31 January 2011

Herz Chai
Affiliation:
Department of Solid Mechanics, Materials and Structures, Faculty of Engineering, Tel Aviv University, Israel 69978
Brian Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Sataporn Wuttiphan
Affiliation:
National Metal and Materials Technology Center, Bangkok 10400, Thailand
Get access

Extract

Fracture modes in a model glass–polymer coating–substrate system indented with hard spheres are investigated. The large modulus mismatch between the glass and polymer results in distinctive transverse fracture modes within the brittle coating: exaggerated circumferential (C) ring cracks that initiate at the upper coating surface well outside the contact (as opposed to the near-contact Hertzian cone fractures observed in monolithic brittle materials); median–radial (M) cracks that initiate at the lower surface (i.e., at the substrate interface) on median planes containing the contact axis. Bonding between the coating and substrate is sufficiently strong as to preclude delamination in our system. The transparency of the constituent materials usefully enables in situ identification and quantification of the two transverse fracture modes during contact. The morphologies of the cracks and the corresponding critical indentation loads for initiation are measured over a broad range of coating thicknesses (20 mm to 5.6 mm), on coatings with like surface flaw states, here ensured by a prebonding abrasion treatment. There is a well-defined, broad intermediate range where the indented coating responds more like a flexing plate than a Hertzian contact, and where the M and C cracks initiate in close correspondence with a simple critical stress criterion, i.e., when the maximum tensile stresses exceed the bulk strength of the (abraded) glass. In this intermediate range the M cracks generally form first—only when the flaws on the lower surface are removed (by etching) do the C cracks form first. Finite element modeling is used to evaluate the critical stresses at crack initiation and the surface locations of the crack origins. Departures from the critical stress condition occur at the extremes of very thick coatings (monolith limit) and very thin coatings (thin-film limit), where stress gradients over the flaw dimension are large. Implications of the results concerning practical coating systems are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
2.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).CrossRefGoogle Scholar
3.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans. ASME J. Tribology 116, 860 (1994).CrossRefGoogle Scholar
4.Pajares, A., Wei, L., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A208, 158 (1996).CrossRefGoogle Scholar
5.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634 (1996).CrossRefGoogle Scholar
6.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).CrossRefGoogle Scholar
7.Chan, H.M., Ann. Rev. Mater. Sci. 27, 249 (1997).CrossRefGoogle Scholar
8.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).CrossRefGoogle Scholar
9.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).CrossRefGoogle Scholar
10.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).CrossRefGoogle Scholar
11.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).CrossRefGoogle Scholar
12.Komvopolous, K., ASME J. Tribology 111, 430 (1989).CrossRefGoogle Scholar
13.Montmitonnet, P., Edinger, M.L., and Felder, E., ASME J. Tribology 115, 15 (1993).CrossRefGoogle Scholar
14.Sun, Y., Bloyce, A., and Bell, T., Thin Solid Films 271, 122 (1995).CrossRefGoogle Scholar
15.Tang, K.C., Faulkner, A., Schwarzer, N., Arnell, R.D., and Richter, F., Thin Solid Films 300, 177 (1997).CrossRefGoogle Scholar
16.Hayashi, K. and Yuan, F., ASME J. Tribology 120, 463 (1998).CrossRefGoogle Scholar
17.Sen, S., Aksakal, B., and Ozel, A., Int. J. Mech. Sci. 40, 1281 (1998).CrossRefGoogle Scholar
18.Hertz, H., Hertz's Miscellaneous Papers (Macmillan, London, 1896), Chaps. 5 and 6.Google Scholar
19.Tillett, J.P., Proc. Phys. Soc. Lond. B69, 47 (1956).CrossRefGoogle Scholar
20.Roesler, F.C., Proc. Phys. Soc. Lond. B69, 981 (1956).CrossRefGoogle Scholar
21.Frank, F.C. and Lawn, B.R., Proc. R. Soc. London A299, 291 (1967).Google Scholar
22.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
23.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
24.Langitan, F.B. and Lawn, B.R., J. Appl. Phys. 40, 4009 (1969).CrossRefGoogle Scholar
25.Swain, M.V. and Lawn, B.R., Phys. Status Solidi 35, 909 (1969).CrossRefGoogle Scholar
26.Guiberteau, F., Padture, N.P., Cai, H., and Lawn, B.R., Philos. Mag. A68, 1003 (1993).CrossRefGoogle Scholar
27.Cai, H., Stevens Kalceff, M.A., and Lawn, B.R., J. Mater. Res. 9, 762 (1994).CrossRefGoogle Scholar
28.Wilshaw, T.R., J. Phys. D: Appl. Phys. 4, 1567 (1971).CrossRefGoogle Scholar
29.Begley, M.R., Evans, A.G., and Hutchinson, J.W., Int. J. Solids Struct. 36, 2773 (1999).CrossRefGoogle Scholar
30.Culf, C.J., J. Soc. Glass Technol. 41, 157T (1957).Google Scholar
31.Fisher-Cripps, A.C. and Lawn, B.R., J. Am. Ceram. Soc. 79, 2609 (1996).CrossRefGoogle Scholar
32.Wuttiphan, S., Pajares, A., Lawn, B.R., and Berndt, C.C., Thin Solid Films 293, 251 (1997).CrossRefGoogle Scholar
33.Fischer-Cripps, A.C. and Lawn, B.R., Acta Mater. 44, 519 (1996).CrossRefGoogle Scholar
34.Wuttiphan, S., Ph.D. Thesis, University of Maryland (1997).Google Scholar
35.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959), p. 275.Google Scholar
36.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K. 1993), Chap. 8.CrossRefGoogle Scholar
37.Lee, S.K., Wuttiphan, S., and Lawn, B.R., J. Am. Ceram. Soc. 80, 2367 (1997).CrossRefGoogle Scholar
38.Pajares, A., Wei, L., Lawn, B.R., and Berndt, C.C., J. Am. Ceram. Soc. 79, 1907 (1996).CrossRefGoogle Scholar