Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T06:59:23.806Z Has data issue: false hasContentIssue false

Gluconate controls one-dimensional growth of tellurium nanostructures

Published online by Cambridge University Press:  01 February 2006

Feng Gao
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Qingyi Lu
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Sridhar Komarneni*
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: komarneni@psu.edu
Get access

Abstract

In this paper, we show for the first time that by using sodium gluconate-assisted solution route, fine, uniform, and single-crystalline tellurium nanorods and nanowires can be synthesized. Sodium gluconate is a green and safe chemical with strong chelating function, and this property may be useful in the fabrication of nanomaterials, especially one-dimensional (1D) nanomaterials. The sodium gluconate acts as both reducing agent and morphology-directing agent and by adjusting the experimental parameters, the lengths and the diameters of the tellurium nanorods could be further controlled in a certain range. This method is a simple and economical route for 1D nanostructure fabrication and might bring about a novel concept for the synthesis of 1D nanostructures with bio-ligand, sodium gluconate.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Juang, R.S., Wu, F.C. and Tseng, R.L.: Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents. Water Res. 33, 2403 (1999).CrossRefGoogle Scholar
2.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C. and Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 (2002).CrossRefGoogle ScholarPubMed
3.Peng, X.G.: Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15, 459 (2003).CrossRefGoogle Scholar
4.Huang, M.H., Mao, S., Feick, F., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
5.Wang, Z.L., Gao, R.P., Gole, J.L. and Stout, J.D.: Silica nanotubes and nanofiber arrays. Adv. Mater. 12, 1938 (2000).3.0.CO;2-4>CrossRefGoogle Scholar
6.Li, M., Schnablegger, H. and Mann, S.: Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).CrossRefGoogle Scholar
7.Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996).CrossRefGoogle ScholarPubMed
8.Xin, H. and Woolley, A.T.: DNA-templated nanotube localization. J. Am. Chem. Soc. 125, 8710 (2003).CrossRefGoogle ScholarPubMed
9.Peng, Z.A. and Peng, X.G.: Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123, 1389 (2001).CrossRefGoogle Scholar
10.Mayers, B. and Xia, Y.: One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12, 1875 (2002).CrossRefGoogle Scholar
11.Liu, Z.P., Hu, Z.K., Xie, Q., Yang, B.J., Wu, J. and Qian, Y.T.: Surfactant-assisted growth of uniform nanorods of crystalline tellurium. J. Mater. Chem. 13, 159 (2003).CrossRefGoogle Scholar
12.Mo, M.S., Zeng, J.H., Liu, X.M., Yu, W.C., Zhang, S.Y. and Qian, Y.T.: Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 14, 1658 (2002).3.0.CO;2-2>CrossRefGoogle Scholar
13.Liu, Z.P., Li, S., Yang, Y., Hu, Z.K., Peng, S., Liang, J.B. and Qian, Y.T.: Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. N. J. Chem. 27, 1748 (2003).CrossRefGoogle Scholar
14.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, Y.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
15.Rao, C.N.R., Deepak, F.L., Gundiah, G. and Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).CrossRefGoogle Scholar
16.Zhao, A.W., Ye, C.H., Meng, G.W., Zhang, L.D. and Ajayan, P.M.: Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition. J. Mater. Res. 18, 2318 (2003).CrossRefGoogle Scholar
17.Yu, H., Gibbons, P.C. and Buhro, W.E.: Bismuth, tellurium, and bismuth telluride nanowires. J. Mater. Chem. 14, 595 (2004).CrossRefGoogle Scholar
18.Zhu, Y.J. and Hu, X.L.: Tellurium nanorods and nanowires prepared by the microwave-polyol method. Chem. Lett. 33, 760 (2004).CrossRefGoogle Scholar
19.Xu, L.Q., Ding, Y.W., Xi, G.C., Zhang, W.Q., Peng, Y.Y., Yu, W.C. and Qian, Y.T.: Large-scale synthesis of crystalline tellurium nanowires with controlled-diameters via a hydrothermal-reduction process. Chem. Lett. 33, 592 (2004).CrossRefGoogle Scholar
20.Li, Y.D., Liao, H.W., Ding, Y., Qian, Y.T., Yang, L. and Zhou, G.E.: Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 10, 2301 (1998).CrossRefGoogle Scholar