Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-21T10:15:45.188Z Has data issue: false hasContentIssue false

Glucose-sensing properties of citrate-functionalized maghemite nanoparticle–modified indium tin oxide electrodes

Published online by Cambridge University Press:  29 May 2020

Noorhashimah Mohamad Nor
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
Khairunisak Abdul Razak*
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia; and NanoBiotechnology Research and Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
Zainovia Lockman
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
*
a)Address all correspondence to this author. e-mail: khairunisak@usm.my
Get access

Abstract

Iron oxide nanoparticles presenting colloidal stability in water were prepared through precipitation and then surface-functionalized with varying citric acid (CA) concentrations (0.10, 0.25, 0.50, and 0.70 g/mL). CA introduced functionality and minimized agglomeration. Iron oxide nanoparticles with colloidal stability in water at physiological pH were obtained after functionalization with 0.25–0.70 g/mL CA, whereas iron oxide nanoparticles without stability in water were obtained after functionalization with 0.10 g/mL CA. An electrode for glucose detection was fabricated by self-assembling colloidal-stable γ-Fe2O3 NP–CA in water on indium tin oxide (ITO) glass, followed by a glucose oxidase (GOx) and Nafion layer. The optimal functionalization of the γ-Fe2O3 NPs was obtained at a CA concentration of 0.25 g/mL. The electrochemical properties and electrocatalytic behavior of the modified electrode designated as Nafion/GOx/γ-Fe2O3 NP–0.25 CA/ITO were then evaluated. The electrode showed high sensitivity for glucose detection of 995.57 and 5.81 µA/(mM cm2) within the linear ranges of 0.1–5.0 µM and 5.0 µM–20.0 mM, respectively. The modified electrode also demonstrated a low limit of detection, good repeatability of 2.5% (n = 10), and sufficient reproducibility of 3.2% (n = 5).

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hayat, A. and Marty, J.L.: Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 14, 10432 (2014).CrossRefGoogle ScholarPubMed
Baghayeri, M., Veisi, H., and Ghanei-Motlagh, M.: Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators, B 249, 321 (2017).CrossRefGoogle Scholar
Xie, J., Wang, S., Aryasomayajula, L., and Varadan, V.K.: Effect of nanomaterials in platinum-decorated carbon nanotube paste-based electrodes for amperometric glucose detection. J. Mater. Res. 23, 1457 (2011).CrossRefGoogle Scholar
Ravi Dhas, C., Venkatesh, R., David Kirubakaran, D., Princy Merlin, J., Subramanian, B., and Moses Ezhil Raj, A.: Electrochemical sensing of glucose and photocatalytic performance of porous Co3O4 films by nebulizer spray technique. Mater. Chem. Phys. 186, 561 (2017).CrossRefGoogle Scholar
Annu, P., Sharma, S., Jain, R., and Raja, A.N.: Review—pencil graphite electrode: An emerging sensing material. J. Electrochem. Soc. 167, 037501 (2019).CrossRefGoogle Scholar
Chen, X., Zhu, J., Chen, Z., Xu, C., Wang, Y., and Yao, C.: A novel bienzyme glucose biosensor based on three-layer Au–Fe3O4@SiO2 magnetic nanocomposite. Sens. Actuators, B 159, 220 (2011).CrossRefGoogle Scholar
Chen, T-W., Chinnapaiyan, S., Chen, S-M., Ajmal Ali, M., Elshikh, M.S., and Hossam Mahmoud, A.: Facile synthesis of copper ferrite nanoparticles with chitosan composite for high-performance electrochemical sensor. Ultrason. Sonochem. 63, 104902 (2020).CrossRefGoogle ScholarPubMed
Sanaeifar, N., Rabiee, M., Abdolrahim, M., Tahriri, M., Vashaee, D., and Tayebi, L.: A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 519, 19 (2017).CrossRefGoogle ScholarPubMed
Hasanzadeh, M., Shadjou, N., and de la Guardia, M.: Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trac. Trends Anal. Chem. 72, 1 (2015).CrossRefGoogle Scholar
Yang, L., Ren, X., Tang, F., and Zhang, L.: A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 25, 889 (2009).CrossRefGoogle Scholar
Norouzi, P., Faridbod, F., Larijani, B., and Ganjali, M.R.: Glucose Biosensor based on mwcnts-gold nanoparticles in a nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci. 5, 1213 (2010).Google Scholar
Tombácz, E., Farkas, K., Földesi, I., Szekeres, M., Illés, E., Tóth, I.Y., Nesztor, D., and Szabó, T.: Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus 6, 20160068 (2016).CrossRefGoogle ScholarPubMed
Yang, Z., Zhang, C., Zhang, J., and Bai, W.: Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens. Bioelectron. 51, 268 (2014).CrossRefGoogle ScholarPubMed
Abdul Amir Al-Mokaram, A.M.A., Yahya, R., Abdi, M.M., and Muhammad Ekramul Mahmud, H.N.: One-step electrochemical deposition of polypyrrole chitosan iron oxide nanocomposite films for non-enzymatic glucose biosensor. Mater. Lett. 183, 90 (2016).CrossRefGoogle Scholar
Ling, W., Wang, M., Xiong, C., Xie, D., Chen, Q., Chu, X., Qiu, X., Li, Y., and Xiao, X.: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1828 (2019).CrossRefGoogle Scholar
Nigam, S., Barick, K.C., and Bahadur, D.: Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 323, 237 (2011).CrossRefGoogle Scholar
Sharma, A., Baral, D., Rawat, K., R Solanki, P., and Bohidar, H.B.: Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection. Nanotechnology 26, 175302 (2015).CrossRefGoogle ScholarPubMed
Wu, Y., Ma, Y., Xu, G., Wei, F., Ma, Y., Song, Q., Wang, X., Tang, T., Song, Y., Shi, M., Xu, X., and Hu, Q.: Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens. Actuators, B 249, 195 (2017).CrossRefGoogle Scholar
Mohamad Nor, N., Abdul Razak, K., and Lockman, Z.: Physical and electrochemical properties of iron oxide nanoparticles-modified electrode for amperometric glucose detection. Electrochim. Acta 248, 160 (2017).CrossRefGoogle Scholar
Mohamad Nor, N., Lockman, Z., and Razak, K.A.: Study of ITO glass electrode modified with iron oxide nanoparticles and nafion for glucose biosensor application. Procedia Chem. 19, 50 (2016).Google Scholar
Alibeigi, S. and Vaezi, M.R.: Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+. Chem. Eng. Technol. 31, 1591 (2008).CrossRefGoogle Scholar
Polte, J.: Fundamental growth principles of colloidal metal nanoparticles: A new perspective. CrystEngComm 17, 68096830 (2015).CrossRefGoogle Scholar
Munjal, S., Khare, N., Sivakumar, B., and Nair Sakthikumar, D.: Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications. J. Magn. Magn. Mater. 477, 388 (2019).CrossRefGoogle Scholar
Sahoo, Y., Goodarzi, A., Swihart, M.T., Ohulchanskyy, T.Y., Kaur, N., Furlani, E.P., and Prasad, P.N.: Aqueous ferrofluid of magnetite Nanoparticles: Fluorescence labeling and magnetophoretic control. J. Phys. Chem. B. 109, 3879 (2005).CrossRefGoogle ScholarPubMed
Cheraghipour, E., Javadpour, S., and Mehdizadeh, A.: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Eng. 5, 715 (2012).Google Scholar
Olvera-Venegas, P.N., Hernández Cruz, L.E., and Lapidus, G.T.: Leaching of iron oxides from kaolin: Synergistic effect of citrate-thiosulfate and kinetic analysis. Hydrometallurgy 171, 16 (2017).CrossRefGoogle Scholar
Lucas, I.T., Durand-Vidal, S., Dubois, E., Chevalet, J., and Turq, P.: Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. J. Phys. Chem. C 111, 18568 (2007).CrossRefGoogle Scholar
De Sousa, M.E., Fernández van Raap, M.B., Rivas, P.C., Mendoza Zélis, P., Girardin, P., Pasquevich, G.A., Alessandrini, J.L., Muraca, D., and Sánchez, F.H.: Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J. Phys. Chem. C 117, 5436 (2013).CrossRefGoogle Scholar
Pajor-Świerzy, A., Farraj, Y., Kamyshny, A., and Magdassi, S.: Effect of carboxylic acids on conductivity of metallic films formed by inks based on copper@silver core–shell particles. Colloids Surf., A 522, 320 (2017).CrossRefGoogle Scholar
Sharma, A., Baral, D., Bohidar, H.B., and Solanki, P.R.: Oxalic acid capped iron oxide nanorods as a sensing platform. Chem. Biol. Interact. 238, 129 (2015).CrossRefGoogle ScholarPubMed
Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., and Malhotra, B.D.: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676 (2008).CrossRefGoogle ScholarPubMed
Cui, M., Xu, B., Hu, C., Shao, H.B., and Qu, L.: Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode. Electrochim. Acta 98, 48 (2013).CrossRefGoogle Scholar
Karuppiah, C., Palanisamy, S., Chen, S-M., Veeramani, V., and Periakaruppan, P.: Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim. Acta 181, 1843 (2014).CrossRefGoogle Scholar
Peng, H-P., Liang, R-P., Zhang, L., and Qiu, J-D.: Facile preparation of novel core–shell enzyme–Au–polydopamine–Fe3O4 magnetic bionanoparticles for glucosesensor. Biosens. Bioelectron. 42, 293 (2013).CrossRefGoogle ScholarPubMed
Baby, T.T. and Ramaprabhu, S.: Non-enzymatic glucose and cholesterol biosensors based on silica coated nano iron oxide dispersed multiwalled carbon nanotubes, edited by IEEE Xplore, Presented at the Nanoscience, Technology and Societal Implications (NSTSI), 2011 International Conference, Bhubaneswar, 2011; p. 1.CrossRefGoogle Scholar
Rossi, L.M., Quach, A.D., and Rosenzweig, Z.: Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem. 380, 606 (2004).CrossRefGoogle ScholarPubMed
Mohamad Nor, N., Abdul Razak, K., Tan, S.C., and Noordin, R.: Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application. J. Alloys Compd. 538, 100 (2012).CrossRefGoogle Scholar
Abramoff, M.D., Magalhães, P.J., and Ram, S.J.: Image processing with ImageJ. Biophot. Int. 11, 36 (2004).Google Scholar