Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T08:52:43.919Z Has data issue: false hasContentIssue false

Grain size, Grain Uniformity, and (111) Texture Enhancement by Solid-phase Crystallization of F- and C-implanted SiGe Films

Published online by Cambridge University Press:  31 January 2011

A. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
J. Olivares
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
C. González
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
J. Sangrador
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
T. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
C. Ballesteros
Affiliation:
Departamento de Física, E.P.S., Universidad Carlos III, Avenida de la Universidad 30, 28911 Leganés (Madrid), Spain
R. M. Gwilliam
Affiliation:
Department of Electronic and Electrical Engineering, University of Surrey, Guildford, Surrey, GU2 5XH, United Kingdom
Get access

Abstract

The crystallization kinetics and film microstructure of poly-SiGe layers obtained by solid-phase crystallization of unimplanted and C- and F-implanted 100-nm-thick amorphous SiGe films deposited by low-pressure chemical vapor deposition on thermally oxidized Si wafers were studied. After crystallization, the F- and C-implanted SiGe films showed larger grain sizes, both in-plane and perpendicular to the surface of the sample, than the unimplanted SiGe films. Also, the (111) texture was strongly enhanced when compared to the unimplanted SiGe or Si films. The crystallized F-implanted SiGe samples showed the dendrite-shaped grains characteristic of solid-phase crystallized pure Si. The structure of the unimplanted SiGe and C-implanted SiGe samples consisted of a mixture of grains with well-defined contour and a small number of quasi-dendritic grains. These samples also showed a very low grain-size dispersion.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brotherton, S.D., Semicond. Sci. Technol. 10, 721 (1995).CrossRefGoogle Scholar
2.Yamauchi, N. and Reif, R., J. Appl. Phys. 75, 3235 (1994).CrossRefGoogle Scholar
3.Kim, J-W., Ryu, M-K., Kim, K-B., Hwang, C-W., Bae, B.S., Han, M-K., and Kim, S-J., Jpn. J. Appl. Phys. 35, L757 (1996).CrossRefGoogle Scholar
4.Hasegawa, S., Fujimoto, E., Inokuma, T., and Kurata, Y., J. Appl. Phys. 77, 357 (1995).CrossRefGoogle Scholar
5.Kouvatsos, D.N., Voutsas, A.T., and Hatalis, M.K., J. Electron. Mater. 28, 19 (1998).CrossRefGoogle Scholar
6.Wu, I-W., Chiang, A., Fuse, M., Oveçoglu, L., and Huang, T.Y., J. Appl. Phys. 65, 4036 (1989).CrossRefGoogle Scholar
7.Park, J-W., Moon, D-G., Ahn, B-T., Im, H-B., and Lee, K., Thin Solid Films 245, 228 (1994).CrossRefGoogle Scholar
8.Olivares, J., Rodríguez, A., Sangrador, J., Rodríguez, T., Ballesteros, C., and Kling, A., Thin Solid Films 337, 51 (1999).CrossRefGoogle Scholar
9.Olivares, J., Sangrador, J., Rodríguez, A., and Rodríguez, T., J. Phys. IV 9, 321 (1999).Google Scholar
10.Salm, C., Klappe, J.G.E, Holleman, J., Rem, J.B., and Woerlee, P.H., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Floro, J.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), pp. 721726.Google Scholar
11.Jiang, H.G., Rühle, M., and Lavernia, E., J. Mater. Res. 14, 549 (1999).CrossRefGoogle Scholar
12.Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).CrossRefGoogle Scholar
13.Kennedy, E.F., Csepregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4241 (1977).CrossRefGoogle Scholar
14.Regolini, J.L., Gisbert, F., Dolino, G., and Boucaud, P., Mater. Lett. 18, 57 (1993).CrossRefGoogle Scholar
15.Queirolo, G., Bresolin, C., Robba, D., Anderle, M., Canteri, R., Armigliato, A., Ottaviani, G., and Frabboni, S., J. Electron. Mater. 20, 373 (1991).CrossRefGoogle Scholar
16.Cheng, H-C., Wang, F-S., Huang, Y-F., and Huang, C-Y., J. Electrochem. Soc. 142, 3574 (1995).CrossRefGoogle Scholar
17.Hasegawa, S., Watanabe, S., Inokuma, T., and Kurata, Y., J. Appl. Phys. 77, 1938 (1995).CrossRefGoogle Scholar
18.Hwang, C-W., Ryu, M-K., Kim, K-B., Lee, S-C., and Kim, C-S., J. Appl. Phys. 77, 3042 (1995).CrossRefGoogle Scholar