Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T08:59:13.775Z Has data issue: false hasContentIssue false

Grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions

Published online by Cambridge University Press:  31 January 2011

Guangshe Li
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
Liping Li
Affiliation:
Department of Physics, Brigham Young University, Provo, Utah 84602
Juliana Boerio-Goates
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
Brian F. Woodfield*
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
*
a)Address all correspondence to this author. e-mail: brian_woodfield@byu.edu
Get access

Abstract

Rutile nanocrystals were directly prepared under hydrothermal conditions using TiCl4 as the starting material. The formation reactions proceeded by suppressing the crystallization of the other TiO2 polymorphs using a fixed concentration of 0.62 M [Ti4+]. With increasing reaction temperatures from 140 to 220°C, rutile nanocrystals were found to grow from 5.4 to 26.4 nm in size, and by varying the reaction time from 2 to 120 h at 200°C the particle size increased from 17 to 40 nm. The grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions was found to follow the equation, Dn = k0 × t × e(-Ea/RT) with a grain-growth exponent n = 5 and an activation energy of Ea = 170.8 kJ mol-1. The nanocrystals thus obtained consist of an interior rutile lattice and a surface hydration layer. With decreasing particle size, the hydration effects at the surface increase, while the rutile structure shows a lattice expansion and covalency enhancement in the Ti-O bonding.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wells, A.F., Structural Inorganic Chemistry (Clarendon Press, Oxford, U.K., 1975).Google Scholar
2.O'Regan, B. and Gratzel, M., Nature, 353, 737 (1991).Google Scholar
3.Kumar, K.N.P., Keizer, K., and Burggraaf, A., J. Mater. Chem. 3, 1141 (1993).Google Scholar
4.Ollis, D.F., Pelizzetti, E., and Serpone, N., Environ. Sci. Technol. 5, 1523 (1996).Google Scholar
5.Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., and Scheel, H.J., J. Am. Chem. Soc. 118, 6716 (1996).CrossRefGoogle Scholar
6.Moritz, T., Reiss, J., Diesner, K., Su, D., and Chemseddine, A., J. Phys. Chem. B 101, 8052 (1997).Google Scholar
7.Lee, D.S. and Liu, T.K., J. Sol-Gel Sci. Technol. 25, 121 (2002).CrossRefGoogle Scholar
8.Sugimoto, T. and Zhou, X.P., J. Colloid Interf. Sci. 252, 347 (2002).CrossRefGoogle Scholar
9.Parala, H., Devi, A., Bhakta, R., and Fischer, R.A., J. Mater. Chem. 12, 1625 (2002).Google Scholar
10.Wilson, G.J., Will, G.D., Frost, R.L., and Montgomery, S.A., J. Mater. Chem. 12, 1787 (2002).CrossRefGoogle Scholar
11.Wang, C.C., and Ying, J.Y., Chem. Mater. 11, 3113 (1999).CrossRefGoogle Scholar
12.Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).Google Scholar
13.Park, S.D., Cho, Y.H., Kim, W.W., and Kim, S.J., J. Solid State Chem. 146, 230 (1999).CrossRefGoogle Scholar
14.JCPDS 21-1276 (International Center for Diffraction Data, Newton Square, PA, 1998).Google Scholar
15.Aruna, S.T., Tirosh, S., and Zaban, A., J. Mater. Chem. 10, 2388 (2000).Google Scholar
16.Ciavatta, L., Ferri, D., and Riccio, G., Polyhedron 4, 15 (1985).Google Scholar
17.Cheng, H., Ma, J., Zhao, Z., and Qi, L., Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
18.Hildenbrand, V.D., Fuess, H., Pfaff, G., and Reynders, P., Z. Phys. Chem. 194, 139 (1996).CrossRefGoogle Scholar
19.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).Google Scholar
20.Hofler, H.J. and Averback, R.S., Scripta Metall. Mater. 24, 2401 (1990).Google Scholar
21.Thorwarth, G., Mandl, S., and Rauschenbach, B., Surf. Coatings Technol. 136, 236 (2001).Google Scholar
22.Kim, K.S. and Winograd, N., Surf. Sci. 43, 625 (1974).Google Scholar
23.McCafferty, E. and Wightman, J.P., Surf. Interf. Anal. 26, 549 (1998).3.0.CO;2-Q>CrossRefGoogle Scholar
24.Li, Q.W., Baer, D.R., Engelhard, M.H., and Shultz, A.N., Surf. Sci. 344, 237 (1995).Google Scholar
25.Sodergren, S., Siegbahn, H., Rensmo, H., Lindstriom, H., Hagfeldt, A., and Lindquist, S.E., J. Phys. Chem. B 101, 3087 (1997).CrossRefGoogle Scholar
26.Sayers, C.N. and Armstrong, N.R., Surf. Sci. 77, 301 (1978).Google Scholar
27.Vergazov, V.A., Leko, A.V., and Evarestov, R.A., Phys. Solid State 41, 1286 (1999).Google Scholar
28.Schelling, P.K., Yu, N., and Halley, J.W., Phys. Rev. B 58, 1279 (1998).CrossRefGoogle Scholar
29.Palkar, V.R., Ayyub, P., Chattopadhyay, S., and Multani, M., Phys. Rev. B 53, 2167 (1996).Google Scholar
30.Ayyub, P., Palkar, V.R., Chattopadhyay, S., and Multani, M., Phys. Rev. B 51, 6135 (1995).Google Scholar
31.Tsunekawa, S., Ishikawa, K., Li, Z.Q., Kawazoe, Y., and Kasuga, A., Phys. Rev. Lett. 85, 3440 (2000).CrossRefGoogle Scholar