Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T17:33:35.468Z Has data issue: false hasContentIssue false

Growth of cubic boron nitride films on tungsten carbide substrates by direct current jet plasma chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

J. Yu
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
S. Matsumoto*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
*
a) Address all correspondence to this author. e-mail: seiichiro.matsumoto@nims.go.jp
Get access

Abstract

Cubic boron nitride (cBN) film was deposited on Co-containing WC substrates by dc jet plasma chemical vapor deposition from an Ar–N2–BF3–H2 gas system. The formation of cobalt nitrides was observed at interface, and the hindrance of Co on cBN growth was demonstrated. Growth temperature and etching treatment of the substrate before deposition influenced the cBN growth greatly. At 1050 °C, cBN films were obtained on etched substrates but not on unetched substrates. At 1090 °C, cBN films were not obtained even on etched substrates. At 960 °C, cBN films deposited even on unetched substrate but the films always peeled off after exposing to air. The film quality of cBN deposited at 960 °C is better than that deposited at 1050 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mohammad, S.N., Solid-State Electronics. 46, 203 (2002).CrossRefGoogle Scholar
2Mirkarimi, P.B., McCarty, K.F. and Medlin, D.L., Mater. Sci. Eng. R21, 47 (1997).CrossRefGoogle Scholar
3Mishima, O., Tanaka, J., Yamaoka, S. and Fukunaga, O., Science. 238, 962 (1987).CrossRefGoogle Scholar
4Mishima, O., Era, K., Tanaka, J. and Yamaoka, S., Appl. Phys. Lett. 53, 962 (1988).Google Scholar
5Gameza, L.M., Shipilo, V.B. and Savchuk, V.A., Diamond Relat. Mater. 7, 32 (1998).CrossRefGoogle Scholar
6Roning, C., Feldermann, H. and Hofsass, H., Diamond Relat. Mater. 9, 1767 (2000).CrossRefGoogle Scholar
7Barth, K.L., Lunk, A. and Ulmer, J., Surf. Coat. Technol. 92, 96 (1997).CrossRefGoogle Scholar
8Litvinov, D. and Clarke, R., Appl. Phys. Lett. 74, 955 (1999).CrossRefGoogle Scholar
9Yamamoto, K., Keunecke, M. and Bewilloga, K., Thin Solid Films 377–378, 331 (2000).CrossRefGoogle Scholar
10Matsumoto, S. and Zhang, W.J., Jpn. J. Appl. Phys. 39,L442 (2000).Google Scholar
11Zhang, W.J. and Matsumoto, S., Appl. Phys. A 71, 469 (2000).CrossRefGoogle Scholar
12Zhang, W.J., Jiang, X. and Matsumoto, S., Appl. Phys. Lett. 79, 4530 (2001).CrossRefGoogle Scholar
13Okamoato, M., Utsumi, Y. and Osaka, Y., Jpn. J. Appl. Phys. 1, 3455 (1992).CrossRefGoogle Scholar
14Setsuhara, Y., Kumagai, M., Suzuki, M., Suzuki, T. and Miyake, S., Surf. Coat. Technol. 119, 100 (1999).CrossRefGoogle Scholar
15Keunecke, M., Yamamoto, K. and Bewilogua, K., Thin Solid Films 398,142 (2001).Google Scholar
16Weissmatel, S. and Reisse, G., Diamond Relat. Mater. 10, 1973 (2001).CrossRefGoogle Scholar
17Lindbauer, A., Haubner, R. and Lux, B., Diamond Films Technol. 2, 81 (1992).Google Scholar
18Spinnewyn, J., Nesladek, M. and Asinari, C., Diamond Relat. Mater. 2, 361 (1993).CrossRefGoogle Scholar
19Yu, J. and Matsumoto, S., Diamond Relat. Mater. 12, 1539 (2003).CrossRefGoogle Scholar
20Zhang, W.J., Matsumoto, S., Li, Q., Bello, I. and Lee, S.T., Adv. Funct. Mater. 12, 250 (2002).3.0.CO;2-L>CrossRefGoogle Scholar
21Zhang, W.J., Matsumoto, S., Kurashima, K. and Bando, Y., Diamond Relat. Mater. 10, 1881 (2001).CrossRefGoogle Scholar
22Werninghaus, T., Hahn, J., Richter, F. and Zahn, D.R.T., Appl. Phys. Lett. 70, 958 (1997).CrossRefGoogle Scholar
23Matsumoto, S. and Zhang, W.J., New Diamond Front. Carbon Technol. 11, 1 (2001).Google Scholar