Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:45:31.987Z Has data issue: false hasContentIssue false

High Jc YBa2Cu3O7-δ films via rapid, low pO2 pyrolysis

Published online by Cambridge University Press:  31 January 2011

J. T. Dawley
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
P. G. Clem
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
D. L. Overmyer
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
Get access

Abstract

In this investigation YBa2Cu3O7-δ (YBCO) films were fabricated via a metal acetate, trifluoroacetic acid based sol-gel route and spin-coat deposited on (100) LaAlO3 with a focus on maximizing Jc, while minimizing processing time. We demonstrate that the use of a low-pO2 atmosphere during the pyrolysis stage can lead to at least a tenfold reduction in pyrolysis time, compared to a 1 atm O2 ambient. High-quality YBCO films on LaAlO3, with Jc values up to 3 MA/cm2 at 77 K, can be routinely crystallized from these rapidly pyrolyzed films.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mankiewich, P.M., Scofield, J.H., Skocpol, W.J., Howard, R.E., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
2.Siegal, M.P., Phillips, J.M., van Dover, R.B., Tiefel, T.H., and Marshall, J.H., J. Appl. Phys. 68, 6353 (1990).CrossRefGoogle Scholar
3.Siegal, M.P., Hou, S.Y., Phillips, J.M., Tiefel, T.H., and Marshall, J.H., J. Mater. Res. 7, 2658 (1992).CrossRefGoogle Scholar
4.Garzon, F.H., Beery, J.G., Brown, D.R., Sherman, R.J., and Raistrick, I.D., Appl. Phys. Lett. 54, 1365 (1989).CrossRefGoogle Scholar
5.Chan, S-W., Bagley, B.G., Greene, L.H., Giroud, M., Feldmann, W.L., Jenkin, K.R. II, and Wilkins, B.J., Appl. Phys. Lett. 53, 1443 (1988).CrossRefGoogle Scholar
6.Hou, S.Y., Phillips, J.M., Werder, D.J., Tiefel, T.H., Marshall, J.H., and Siegal, M.P., J. Mater. Res. 9, 1936 (1994).CrossRefGoogle Scholar
7.Malecki, A., Oblakowski, J., and Labus, S., Mater. Res. Bull. 30, 731 (1995).CrossRefGoogle Scholar
8.Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I., and Hussey, B.W., Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
9.McIntyre, P.C., Cima, M.J., Smith, J.A. Jr., Hallock, R.B., Siegal, M.P., and Phillips, J.M., J. Appl. Phys. 71, 1868 (1992).CrossRefGoogle Scholar
10.McIntyre, P.C. and Cima, M.J., J. Mater. Res. 9, 2219 (1994).CrossRefGoogle Scholar
11.Smith, J.A., Cima, M.J., and Sonnenberg, N., IEEE Trans. Appl. Supercond. 9, 1531 (1999).CrossRefGoogle Scholar
12.McIntyre, P.C., Cima, M.J., and Ng, M.F., J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
13.Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., and Waszczak, J.V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
14.Krupoder, S.A., Danilovich, V.S., Miller, A.O., and Furin, G.G., J. Fluorine Chem. 73, 13 (1995).CrossRefGoogle Scholar
15.Carlson, D.J., Siegal, M.P., Phillips, J.M., Tiefel, T.H., and Marshall, J.H., J. Mater. Res. 5, 2797 (1990).CrossRefGoogle Scholar