Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T02:50:57.593Z Has data issue: false hasContentIssue false

Highly infrared transparent spark plasma sintered AlON ceramics

Published online by Cambridge University Press:  18 April 2017

Yingchun Shan*
Affiliation:
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
Xialu Wei
Affiliation:
College of Engineering, San Diego State University, San Diego, CA 92182, USA
Xiannian Sun
Affiliation:
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
Jiujun Xu
Affiliation:
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
Qinghua Qin
Affiliation:
Research School of Engineering, Australian National University, Acton, ACT 2601, Australia
Eugene A. Olevsky*
Affiliation:
College of Engineering, San Diego State University, San Diego, CA 92182, USA
*
a) Address all correspondence to these authors. e-mail: shanychun@dlmu.edu.cn
Get access

Abstract

Spark plasma sintering (SPS) is adopted to fabricate transparent AlON ceramics at 1350–1500 °C under 40 MPa, using a bimodal γ-AlON powder synthesized by the carbothermal reduction and nitridation method. After holding 10 min, high density samples are obtained, and their optical transmittance is investigated over the wavelength range of 1330–6000 nm. Despite the samples SPS-processed at 1350 °C indicate the presence of three-phases: γ-AlON, α-Al2O3, and h-AlN, they show high infrared transparency, i.e., the maximum transmittance for 1.2 mm thick specimens is up to 77.3% at ∼3900 nm. Also, the processed samples exhibit high hardness of 17.81 GPa. The high infrared transmittance should be mainly attributed to high density and rationally controlled grain size distribution, and the high hardness is apparently caused by a small grain size.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Eugene Medvedovski

References

REFERENCES

MaCauley, J.W., Patel, P., Chen, M., Gilde, G., Strassburger, E., Paliwal, B., Ramesh, K.T., and Dandekar, D.P.: AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc. 29, 223226 (2009).CrossRefGoogle Scholar
Su, M.Y., Zhou, Y.F., Wang, K., Yang, Z.F., Cao, Y.G., and Hong, M.C.: Highly transparent AlON sintered from powder synthesized by direct nitridation. J. Eur. Ceram. Soc. 35, 11731178 (2015).CrossRefGoogle Scholar
Xie, R.J., Hirosaki, N., Liu, X.J., Takeda, T., and Li, H.L.: Crystal structure and photoluminescence of Mn2+–Mg2+ codoped gamma aluminum oxynitride (γ-AlON): A promising green phosphor for white light-emitting diodes. Appl. Phys. Lett. 92, 201905 (2008).Google Scholar
Swab, J.J., Pavlacka, R., Gilde, G., Kilczewski, S., Wright, J., and Harris, D.: Determining the strength of coarse-grained AlON and spinel. J. Am. Ceram. Soc. 97, 592600 (2013).CrossRefGoogle Scholar
Tu, B.T., Wang, H., Liu, X., Wang, W.M., and Fu, Z.Y.: First-principles study on site preference of aluminum vacancy and nitrogen atoms in γ-AlON. J. Am. Ceram. Soc. 96, 19371943 (2013).Google Scholar
Li, X.L., Luo, J.M., and Zhou, Y.: Spark plasma sintering behavior of AlON ceramics doped with different concentrations of Y2O3 . J. Eur. Ceram. Soc. 35, 20272032 (2015).CrossRefGoogle Scholar
Zhang, F., Wang, S.W., Liu, X.J., An, L.Q., and Yuan, X.Y.: Upconversion luminescence in Er-doped gamma-AlON ceramic phosphors. J. Appl. Phys. 105, 093542 (2009).Google Scholar
Zhang, F., Chen, S., Chen, J.F., Zhang, H.L., Li, J., Liu, X.J., and Wang, S.W.: Characterization and luminescence properties of AlON:Eu2+ phosphor for white-emitting-diode illumination. J. Appl. Phys. 111, 083532 (2012).CrossRefGoogle Scholar
Wang, X.D., Wang, F.M., and Li, W.C.: Synthesis, microstructures and properties of γ-aluminum oxynitride. Mater. Sci. Eng., A 342, 245250 (2003).Google Scholar
Chen, F., Zhang, F., Wang, J., Zhang, H.L., Tian, R., Zhang, J., Zhang, Z., Sun, F., and Wang, S.W.: Microstructure and optical properties of transparent aluminum oxynitride ceramics by hot isostatic pressing. Scr. Mater. 81, 2023 (2014).CrossRefGoogle Scholar
Wang, Y., Xie, X.M., Qi, J.Q., Wang, J., Wei, N., and Lu, T.C.: Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method. J. Mater. Res. 29, 23252331 (2014).CrossRefGoogle Scholar
Kumar, R.S. and Johnson, R.: Aqueous slip casting of transparent aluminum oxynitride. J. Am. Ceram. Soc. 99, 32203225 (2016).Google Scholar
Liu, Q., Jiang, N., Li, J., Sun, K., Pan, Y.B., and Guo, J.K.: Highly transparent AlON ceramics sintered from powder synthesized by carbothermal reduction nitridation. Ceram. Int. 42, 82908295 (2016).CrossRefGoogle Scholar
Krell, A. and Bales, A.: Grain size-dependent hardness of transparent magnesium aluminate spinel. Int. J. Appl. Ceram. Technol. 8, 11081114 (2011).CrossRefGoogle Scholar
Shan, Y.C., Xu, J.X., Wang, G., Sun, X.N., Liu, G.H., Xu, J.J., and Li, J.T.: A fast pressureless sintering method for transparent AlON ceramics by using a bimodal particle size distribution powder. Ceram. Int. 41, 39923998 (2015).CrossRefGoogle Scholar
Khaleghi, E., Lin, Y.S., Meyers, M.A., and Olevsky, E.A.: Spark plasma sintering of tantalum carbide. Scr. Mater. 63, 577580 (2010).Google Scholar
Olevsky, E.A., Bradbury, W.L., Haines, C.D., Martin, D.G., and Kapoor, D.: Fundamental aspects of spark plasma sintering: I. Experimental analysis of scalability. J. Am. Ceram. Soc. 95, 24062413 (2012).Google Scholar
Orru, R., Licheri, R., Locci, A.M., Cincotti, A., and Cao, G.: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng., R 63, 127287 (2009).Google Scholar
Cui, G.D., Wei, X.L., Olevsky, E.A., German, R.M., and Chen, J.Y.: Preparation of high performance bulk Fe–N alloy by spark plasma sintering. Mater. Des. 90, 115123 (2016).Google Scholar
Hu, K., Li, X.Q., Qu, S.G., and Li, Y.Y.: Effect of heating rate on densification and grain growth during spark plasma sintering of 93W–5.6Ni–1.4Fe heavy alloys. Metall. Mater. Trans. A 44, 43234336 (2013).Google Scholar
Chen, I.W. and Wang, X.H.: Sintering dense nano-crystalline ceramics without final stage grain growth. Nature 404, 168171 (2000).Google Scholar
Shan, Y.C., Zhang, Z.H., Sun, X.N., Xu, J.J., Qin, Q.H., and Li, J.T.: Fast densification mechanism of bimodal powder during pressureless sintering of transparent AlON ceramics. J. Eur. Ceram. Soc. 36, 671678 (2016).Google Scholar
Wonisch, A., Kraft, T., Moseler, M., and Riedel, H.: Effect of different article size distributions on solid-state sintering: A microscopic simulation approach. J. Am. Ceram. Soc. 92, 14281434 (2009).Google Scholar
Petersson, A. and Ågren, J.: Sintering shrinkage of WC-Co materials with bimodal grain size distributions. Acta Mater. 53, 16651671 (2005).Google Scholar
Willems, H.X., Hendrix, M.M.R.M., de With, G., and Metselaar, R.: Thermodynamics of AlON. II. Phase relations. J. Eur. Ceram. Soc. 10, 339346 (1992).CrossRefGoogle Scholar
Jones, M.I., Hyuga, H., and Hirao, K.: Optical and mechanical properties of α/β composite sialons. J. Am. Ceram. Soc. 86, 520522 (2003).Google Scholar
Wei, W., Fu, Z.Y., Wang, H., and Wang, W.M.: Research on AlON transparent ceramics by SPS. J. Wuhan Univ. Technol. 31, 1314, 44 (2009).Google Scholar
Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., and Masselink, W.T.: Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 67896798 (2012).Google Scholar
Hartnett, T.M., Bernstein, S.D., Maguire, E.A., and Tustison, R.W.: Optical properties of AlON (aluminum oxynitride). Infrared Phys.Technol. 39, 203211 (1998).CrossRefGoogle Scholar