Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T19:32:58.376Z Has data issue: false hasContentIssue false

Highly self-assembled nanotubular aluminum oxide by hard anodization

Published online by Cambridge University Press:  01 January 2011

Kunbae Noh
Affiliation:
Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093
Karla S. Brammer
Affiliation:
Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093
Hyunsu Kim
Affiliation:
Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093
Se-Yeon Jung
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul, Korea
Tae-Yeon Seong
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul, Korea
Sungho Jin*
Affiliation:
Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093
*
a)Address all correspondence to this author. e-mail: jin@ucsd.edu
Get access

Abstract

Anodized aluminum oxide (AAO), well-known hexagonally ordered vertical pore nanostructure, can be altered to form nanotubular AAO arrays potentially having many favorable properties due to its large surface area and unique geometry. We present here a creation of novel nanotubular AAO structure by the hard anodization technique. Because of the guided formation of void channels at triple cell junctions during the course of the controlled anodization process, periodically spaced-apart aluminum oxide nanotubular geometry could be achieved over large areas. Further separation to well-defined individual AAO nanotube arrays was obtained when etched in a mixed CuCl2/HCl solution during Al substrate removal. Nanotubular geometry AAO with periodic and mechanically robust structure can be useful not only for biomedical applications such as to enhance cell adhesion and viability or drug delivery vehicles, but also as a large-surface-area catalyst support or sensor elements.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle Scholar
2.Lei, Y., Cai, W.P., and Wilde, G.: Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks. Prog. Mater. Sci. 52, 465 (2007).CrossRefGoogle Scholar
3.Li, L., Koshizaki, N., and Li, G.H.: Nanotube arrays in porous anodic alumina membranes. J. Mater. Sci. Technol. 24, 550 (2008).Google Scholar
4.Briggs, E.P., Walpole, A.R., Wilshaw, P.R., Karlsson, M., and Palsgard, E.: Formation of highly adherent nano-porous alumina on Ti-based substrates: A novel bone implant coating. J. Mater. Sci.: Mater. Med. 15, 1021 (2004).Google ScholarPubMed
5.Wieneke, H., Dirsch, O., Sawitowski, T., Gu, Y.L., Brauer, H., Dahmen, U., Fischer, A., Wnendt, S., and Erbel, R.: Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter. Cardiovasc. Interv. 60, 399 (2003).CrossRefGoogle ScholarPubMed
6.Gultepe, E., Nagesha, D., Casse, B.D.F., Banyal, R., Fitchorov, T., Karma, A., Amiji, M., and Sridhar, S.: Sustained drug release from non-eroding nanoporous templates. Small 6, 213 (2010).CrossRefGoogle ScholarPubMed
7.Masuda, H., Hasegwa, F., and Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).CrossRefGoogle Scholar
8.Masuda, H., Yada, K., and Osaka, A.: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37(Pt. 2), L1340 (1998).CrossRefGoogle Scholar
9.Lee, W., Nielsch, K., and Gösele, U.: Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology 18, 475713 (2007).CrossRefGoogle Scholar
10.Lee, W., Ji, R., Gösele, U., and Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741 (2006).CrossRefGoogle ScholarPubMed
11.Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., and Gösele, U.: Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234 (2008).CrossRefGoogle ScholarPubMed
12.Lee, W., Scholz, R., and Gösele, U.: A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 8, 2155 (2008).CrossRefGoogle ScholarPubMed
13.Schwirn, K., Lee, W., Hillebrand, R., Steinhart, M., Nielsch, K., and Gösele, U.: Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano. 2, 302 (2008).CrossRefGoogle ScholarPubMed
14.Li, D.D., Jiang, C.H., Jiang, J.H., and Lu, J.G.: Self-assembly of periodic serrated nanostructures. Chem. Mater. 21, 253 (2009).CrossRefGoogle Scholar
15.Losic, D. and Losic, D.J.: Preparation of porous anodic alumina with periodically perforated pores. Langmuir 25, 5426 (2009).CrossRefGoogle ScholarPubMed
16.Lee, W., Kim, J.C., and Gösele, U.: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater. 20, 21 (2010).Google Scholar
17.Zhao, S.Y., Chan, K., Yelon, A., and Veres, T.: Novel structure of AAO film fabricated by constant current anodization. Adv. Mater. 19, 3004 (2007).CrossRefGoogle Scholar
18.Noh, K., Brammer, K.S., Choi, C., Kim, S.H., Frandsen, C.J., and Jin, S. (unpublished research, 2011).Google Scholar
19.Swan, E.E.L., Popat, K.C., Grimes, C.A., and Desai, T.A.: Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res., Part A 72, 288 (2005).CrossRefGoogle ScholarPubMed
20.Popat, K.C., Swan, E.E.L., Mukhatyar, V., Chatvanichkul, K.I., Mor, G.K., Grimes, C.A., and Desai, T.A.: Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 26, 4516 (2005).CrossRefGoogle ScholarPubMed
21.Keller, F., Hunter, M.S., and Robinson, D.L.: Structural features of oxide coating on aluminum. J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
22.Macdonald, D.D.: On the formation of voids in anodic oxide-films on aluminum. J. Electrochem. Soc. 140, L27 (1993).CrossRefGoogle Scholar
23.Mei, Y.F., Wu, X.L., Shao, X.F., Huang, G.S., and Siu, G.G.: Formation mechanism of alumina nanotube array. Phys. Lett. A 309, 109 (2003).CrossRefGoogle Scholar
24.Houser, J.E. and Hebert, K.R.: The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415 (2009).CrossRefGoogle ScholarPubMed
25.Chu, S.Z., Wada, K., Inoue, S., Isogai, M., and Yasumori, A.: Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 17, 2115 (2005).CrossRefGoogle Scholar
26.Ono, S., Ichinose, H., and Masuko, N.: Defects in porous anodic films formed on high-purity aluminum. J. Electrochem. Soc. 138, 3705 (1991).CrossRefGoogle Scholar
27.Habazaki, H., Shimizu, K., Skeldon, P., Thompson, G.E., and Wood, G.C.: Inter-relationships between ionic transport and composition in amorphous anodic oxides. Proc. R. Soc. London Ser. A Mat. 53, 1593 (1997).CrossRefGoogle Scholar
28.Lohrengel, M.M.: Thin anodic oxide layers on aluminum and other valve metals- high-field regime. Mater. Sci. Eng., R 11, 243 (1993).CrossRefGoogle Scholar
29.Huang, G.S., Xie, Y., Wu, X.L., Yang, L.W., Shi, Y., Siu, G.G., and Chu, P.K.: Formation mechanism of individual alumina nanotubes wrapping metal (Cu and Fe) nanowires. J. Cryst. Growth 289, 295 (2006).CrossRefGoogle Scholar
30.Wang, C.C., Kei, C.C., Yu, Y.W., and Perng, T.P.: Organic nanowire-templated fabrication of alumina nanotubes by atomic layer deposition. Nano Lett. 7, 1566 (2007).CrossRefGoogle ScholarPubMed
31.Lu, C.L., Lv, J.G., Xu, L., Guo, X.F., Hou, W.H., Hu, Y., and Huang, H.: Crystalline nanotubes of gamma-AlOOH and gamma-Al2O3: Hydrothermal synthesis, formation mechanism and catalytic performance. Nanotechnology 20, 215604 (2009).CrossRefGoogle ScholarPubMed
32.Jin, S.: Tactile sensor comprising nanowires and method for making the same. U.S. Patent No. 6 286 226, September 11, 2001.Google Scholar
33.Deck, C.P., Ni, C., Vecchio, K.S., and Bandaru, P.R.: The response of carbon nanotube ensembles to fluid flow: Applications to mechanical property measurement and diagnostics. J. Appl. Phys. 106, 074304 (2009).CrossRefGoogle Scholar
34.Brammer, K.S., Choi, C., Oh, S., Cobb, C.J., Connelly, L.S., Loya, M., Kong, S.D., and Jin, S.: Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett. 9, 3570 (2009).CrossRefGoogle ScholarPubMed
35.Vallet-Regi, M., Doadrio, J.C., Doadrio, A.L., Izquierdo-Barba, I., and Perez-Pariente, J.: Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics 172, 435 (2004).CrossRefGoogle Scholar
36.Feng, B., Chen, J.Y., Qi, S.K., He, L., Zhao, J.Z., and Zhang, X.D.: Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci.: Mater. Med. 13, 457 (2002).Google ScholarPubMed
37.Popat, K.C., Leoni, L., Grimes, C.A., and Desai, T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188 (2007).CrossRefGoogle ScholarPubMed
38.Oh, S., Daraio, C., Chen, L.H., Pisanic, T.R., Finones, R.R., and Jin, S.: Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res., Part A 78A, 97 (2006).CrossRefGoogle Scholar
39.Brammer, K.S., Oh, S., Cobb, C.J., Bjursten, L.M., van der Heyde, H., and Jin, S.: Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 5, 3215 (2009).CrossRefGoogle Scholar