Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T08:38:56.449Z Has data issue: false hasContentIssue false

Hot Isostatic Pressing to Increase Thermal Conductivity of Si3N4 Ceramics

Published online by Cambridge University Press:  31 January 2011

Koji Watari
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya 462, Japan
Kiyoshi Hirao
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya 462, Japan
Manuel E. Brito
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya 462, Japan
Motohiro Toriyama
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya 462, Japan
Shuzo Kanzaki
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya 462, Japan
Get access

Abstract

Highly anisotropic Si3N4 ceramics were successfully fabricated by tape-casting of raw α–Si3N4 powders with β–Si3N4 single-crystal particles as seed particles and Y2O3 as an effective sintering aid, followed by hot isostatic pressing at a temperature of 2773 K for 2 h under a nitrogen gas pressure of 200 MPa. The microstructure consists of very large elongated grains (diameter ~10 μm; length of ~200 μm), highly oriented in the tape-casting direction. The thermal conductivity along this direction reaches 155 W m-1K-1 at room temperature, but varies significantly between room temperature and 1273 K. This thermal conductivity is closely related to (1) formation of extremely large elongated β–Si3N4 grains with a reduced amount of crystal defects due to the high-temperature firing and to (2) orientation of β–Si3N4 grains due to addition of seed particles and to tape-casting.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Slack, G. A., Tanzilli, R.A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids 48, 641647 (1987).CrossRefGoogle Scholar
2.Watari, K., Seki, Y., and Ishizaki, K., J. Ceram. Soc. Jpn. 97, 174181 (1989).CrossRefGoogle Scholar
3.Slack, G. A. and Huseby, I. C., J. Appl. Phys. 53, 68176822 (1982).CrossRefGoogle Scholar
4.Watari, K., Hirao, K., Toriyama, M., Ishizaki, K., Cao, S., and Mori, K., unpublished.Google Scholar
5.Kuriyama, M., Inomata, Y., Kijima, T., and Hasegawa, Y., Am. Ceram. Soc. Bull. 57, 11191122 (1978).Google Scholar
6.Tsukuma, K., Shimada, M., and Koizumi, M., Am. Ceram. Soc. Bull. 60, 910912 (1981).Google Scholar
7.Ziegler, G. and Hasselman, D. P., J. Mater. Sci. 16, 495503 (1981).CrossRefGoogle Scholar
8.Watari, K., Seki, Y., and Ishizaki, K., J. Ceram. Soc. Jpn. 97, 5662 (1989).CrossRefGoogle Scholar
9.Hayashi, K., Tsujimoto, S., Nishikawa, T., and Imamura, Y., J. Ceram. Soc. Jpn. 94, 595600 (1986).Google Scholar
10.Li, C. W., Yamanis, J., Whalen, P. J., Gasdaska, C. J., and Ballard, C. P., in Pressure Effects on Materials Processing and Design, edited by Ishizaki, K., Hodge, E., and Concannon, M. (Mater. Res. Soc. Symp. Proc. 251, Pittsburgh, PA, 1992), pp. 103111.Google Scholar
11.Hirosaki, N., Okamoto, Y., Ando, M., Munakata, F., and Akimune, Y., J. Ceram. Soc. Jpn. 104, 4953 (1996).CrossRefGoogle Scholar
12.Hirao, K., Watari, K., Brito, M. E., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 79, 24852488 (1996).CrossRefGoogle Scholar
13.Ziman, J. M., in Electrons and Phonons (Oxford University Press, London, 1960), Chap. VIII.Google Scholar
14.Brito, M. E., Hirao, K., Watari, K., and Kanzaki, S., presented at 1996 Annual Meeting & Exposition of American Ceramics Society (Paper No., SVII-40–96), Indianapolis, IN, April 14–17, 1996.Google Scholar
15.Brito, M. E., Hirao, K., Watari, K., Toriyama, M., and Kanzaki, S., unpublished.Google Scholar
16.Greskovich, C. and Prochazka, S., J. Am. Ceram. Soc. 64, C96–C97 (1981).Google Scholar
17.Mitomo, M. and Uenosono, S., J. Mater. Sci. 26, 39403944 (1991).CrossRefGoogle Scholar
18.Sakashita, Y., Manabe, C., Muramatsu, K., Kobune, S., Fujikawa, T., and Kanda, T., in Proc. 2nd Int. Conf. on Hot Isostatic Pressing—Theory and Application (ASM INTERNATIONAL, Gaithersburg, MD, 1989).Google Scholar
19.Munakata, F., Sato, C., Hirosaki, N., Tanimura, M., Akimune, Y., Okamoto, Y., and Inoue, Y., J. Ceram. Soc. Jpn. 105, 858861 (1997).CrossRefGoogle Scholar
20.Hirao, K., Tsuge, A., Brito, M. E., and Kanzaki, S., J. Ceram. Soc. Jpn. 101, 10711073 (1993).CrossRefGoogle Scholar
21.Abe, H.et al., in Engineering Ceramics (Gihoudou, Tokyo, 1984), in Chap. 2.Google Scholar