Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T20:20:18.691Z Has data issue: false hasContentIssue false

Hydrothermal preparation of long nanowires of vanadium oxide

Published online by Cambridge University Press:  31 January 2011

Dengyu Pan
Affiliation:
Structural Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Zhang Shuyuan
Affiliation:
Structural Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Yiqing Chen
Affiliation:
Structural Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
J. G. Hou*
Affiliation:
Structural Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*
a)Address all correspondence to this author.jghou@ustc.edu.en
Get access

Abstract

Long beltlike nanowires were successfully synthesized for a semiconducting oxide of vanadium by a hydrothermal route at 180 °C for 5 h and were characterized by x-ray powder diffraction, energy dispersive -ray spectroscopy, and electron diffraction microscopy. The product is mainly layered V2O5 · 0.3H2O with a small fraction of V2O5 · xH2O (0.3 < x < 1.7) and V2O5 phases. The obtained nanowires, several tens of micrometers long and a few of tens of nanometers wide, are crystallized well, growing along the [010] direction. The effects of preparation conditions on the formation of the nanowires are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dekker, C., Phys. Today,52, 22 (1999).CrossRefGoogle Scholar
2.Krumeich, F., Muhr, H.J., Niederberger, M., Bieri, F., and Nesper, R., J. Am. Chem. Soc. 121, 8324 (1999).CrossRefGoogle Scholar
3.Comeinhes, X., Davidson, P., Bourgaux, C., and Livage, J., Adv. Mater. 9, 900 (1997).CrossRefGoogle Scholar
4.Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291, 1947 (2001).CrossRefGoogle Scholar
5.Muster, J., Kim, G.T., and Krstic, V., Adv. Mater.,12, 420 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
6.Kim, G.T., Muster, J., Park, J.G., Krstic, V., and Park, Y.W., Appl. Phys. Lett. 76, 1875 (2000).CrossRefGoogle Scholar
7.Livage, J., inBetter Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc.121, Pittsburgh, PA, 1988), p 167.Google Scholar
8.Guestaux, C., U.S. Patent 4 203 769 (20 May 1980).Google Scholar
9.Davidson, P., , Lamarque-Forget, and Pelletier, O., Adv. Mater. 12, 1267 (2000).Google Scholar
10.Livage, J., Chem. Mater. 3, 578 (1991).CrossRefGoogle Scholar
11.Watson, J.H.L., Heller, W., and Wojetowicz, W.J., Science 109, 274 (1949).CrossRefGoogle Scholar
12.Wojetowicz, W.J., Ph.D Thesis, Wayne State University (1953).Google Scholar
13.Bailey, J.K., Pozamsky, G.A., and Mecartney, M.L., J. Mater. Res. 7, 2530 (1992).CrossRefGoogle Scholar
14.Oka, Y., Yamamoto, N., Ohtani, T., and Takada, T., Ronbunshi, Seramikkusu, J. Ceram. Soc. Jpn. 97, 1441 (1989).CrossRefGoogle Scholar
15.Oka, Y., Yao, T., and Yamamoto, N., Ronbunshi, Seramikkusu, J. Ceram. Soc. Jpn. 98, 1365 (1990).CrossRefGoogle Scholar
16.Andersson, S., Acta Chem. Scand. 19, 1361 (1965).Google Scholar
17.Galy, J., Lavaud, D., Casalot, A., and Hagenmuller, P., J. Solid State Chem. 2, 531 (1970).CrossRefGoogle Scholar
18.Kanke, Y., Kato, K., Takayama-Muromachi, E., and Isobe, M., Acta Crystallogr. C46, 536 (1990).Google Scholar
19.Kanke, Y., Kato, K., Takayama-Muromachi, E., and Isobe, M., Acta Crystallogr. C46, 1590 (1990).Google Scholar
20.Wittingham, M.S., Guo, J., Chen, R., Chirayil, T., Janauer, G., and Zavalij, P., Solid State Ionics 75, 257 (1995).CrossRefGoogle Scholar
21.Yao, T., Oka, Y., and Yamamoto, N., Mater. Res. Bull. 27, 669 (1992).CrossRefGoogle Scholar