Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T19:59:27.532Z Has data issue: false hasContentIssue false

Improvement of the crystallinity of GaN epitaxial layers grown on porous Si (100) layers by using a two-step method

Published online by Cambridge University Press:  31 January 2011

T. W. Kang
Affiliation:
Department of Physics, Dongguk University, Seoul 100–715, Korea
S. H. Park
Affiliation:
Department of Physics, Dongguk University, Seoul 100–715, Korea
T. W. Kim
Affiliation:
Department of Physics, Kwangwoon University 447–1 Wolgye-dong, Nowon-ku, Seoul 139–701, Korea
Get access

Abstract

A new approach was used for combining GaN and porous Si with the goal of producing high-quality GaN epitaxial layers for optoelectronic integrated circuit devices based on Si substrates. Reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD), photoluminescence (PL), and Van der Pauw–Hall effect measurements were performed to investigate the structural, optical, and electrical properties of the GaN epitaxial films grown on porous Si(100) by plasma-assisted molecular-beam epitaxy with a two-step method. The RHEED patterns were streaky with clear Kikuchi lines, which was direct evidence for layer-by-layer two-dimensional growth of GaN epitaxial layers on porous Si layers. The XRD curves showed that the grown layers were GaN(0001) epitaxial films. The results of the XRD and the PL measurements showed that the crystallinities of the GaN epilayers grown on porous Si by using a two-step growth were remarkably improved because the porous Si layer reduced the strains in the GaN epilayers by sharing them with the Si substrates. Hall-effect measurements showed that the mobility of the GaN active layer was higher than that of the GaN initial layer. These results indicate that high-quality GaN epitaxial films grown on porous Si(100) by using two-step growth hold promise for potential applications in new kinds of optoelectronic monolithic and ultralarge integrated circuits.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 27, L1384 (1988).CrossRefGoogle Scholar
2.Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).CrossRefGoogle Scholar
3.Nakamura, S., Harada, Y., and Senoh, M., Appl. Phys. Lett. 58, 2021 (1991).Google Scholar
4.Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
5.Brandt, M.S., Johnson, N.M., Molnar, R.J., Singh, T., and Moustakas, T.D., Appl. Phys. Lett. 64, 2264 (1994).Google Scholar
6.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
7.Yang, Z., Li, L.K., and Wang, W.I., Appl. Phys. Lett. 67, 1686 (1995).Google Scholar
8.Qiu, C.H., Hoggatt, C., Melton, W., Leksono, M.W., and Pankove, J.I., Appl. Phys. Lett. 66, 2712 (1996).Google Scholar
9.Yi, G.C. and Wessels, B.W., Appl. Phys. Lett. 68, 3769 (1996).Google Scholar
10.Fisher, A.J., Shan, W., Song, J.J., Chang, Y.C., Horning, R., and Goldenberg, B., Appl. Phys. Lett. 71, 1981 (1997).CrossRefGoogle Scholar
11.Domen, K., Horino, K., Kuramata, A., and Tanahashi, T., Appl. Phys. Lett. 71, 1996 (1997).Google Scholar
12.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
13.Cho, H.D., Ko, N.H., Park, S.H., Kang, T.W., Han, J.W., Eom, K.S., Won, S.H., and Jung, K.S., J. Cryst. Growth 175, 125 (1997).CrossRefGoogle Scholar
14.Lin, T.L., Sadwick, L., Wang, K.L., Kao, Y.C., Hull, R., Nieh, C.W., Jamieson, D.N., and Liu, J.K., Appl. Phys. Lett. 51, 814 (1987).Google Scholar
15.Kang, T.W., Oh, Y.T., Leem, J.Y., and Kim, T.W., J. Mater. Sci. Lett. 11, 392 (1992).CrossRefGoogle Scholar
16.Mii, Y.J., Lin, T.L., Kao, Y.C., Wu, B.J., Wang, K.L., Nieh, C.W., Jamieson, D.N., and Liu, J.K., J. Vac. Sci. Technol. B 6, 696 (1988).Google Scholar
17.Hardenman, P.W., Beale, M.I.J, Gassen, D.B., Keen, J.M., Pickering, C., and Robbins, D.J., Surf. Sci. 152, 1051 (1985).Google Scholar
18.Harris, C.I., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 840 (1995).Google Scholar
19.Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 99, 381 (1990).Google Scholar
20.Cao, J., Pavlidis, D., Eisenbach, A., Philippe, A., Bru-Chevallier, C., and Guillot, G., Appl. Phys. Lett. 71, 3880 (1997).CrossRefGoogle Scholar