Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T19:27:25.194Z Has data issue: false hasContentIssue false

Independent Control of Metal Cluster and Ceramic Particle Characteristics During One-step Synthesis of Pt/TiO2

Published online by Cambridge University Press:  03 March 2011

Heiko Schulz
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
Lutz Mädler
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
Reto Strobel
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
Rainer Jossen
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
Sotiris E. Pratsinis*
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
Tue Johannessen
Affiliation:
Interdisciplinary Research Center for Catalysis, Department of Chemical Engineering,Technical University of Denmark, DK-2800 Lyngby, Denmark
*
a) Address all correspondence to this author.e-mail: pratsinis@ptl.mavt.ethz.ch
Get access

Abstract

Rapid quenching during flame spray synthesis of Pt/TiO2 (0–10 wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt) cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen adsorption, electron microscopy and x-ray diffraction, respectively, while Pt-dispersion and size were determined by CO-pulse chemisorption. The influence of quench cooling on the flame temperature was analyzed by Fourier transform infrared spectroscopy. Increasing the quench flow rate reduced the Pt diameter asymptotically. Optimal quenching with respect to maximum Pt-dispersion (∼60%) resulted in average Pt diameters of 1.7 to 2.3 nm for Pt-contents of 1–10 wt%, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jacobsen, C.J.H., Dahl, S., Hansen, P.L., Tornqvist, E., Jensen, L., Topsoe, H., Prip, D.V., Moenshaug, P.B. and Chorkendorff, I.: Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. Chem. 163, 19 (2000).CrossRefGoogle Scholar
2Mädler, L., Sahm, T., Gurlo, A., Grunwaldt, J-D., Barsan, N.W.U., and Pratsinis, S.E.: Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J. Nanoparticle Res. (2005, submitted).Google Scholar
3Strobel, R., Stark, W.J., Mädler, L., Pratsinis, S.E. and Baiker, A.: Flame-made platinum/alumina: Structural properties and catalytic behaviour in enantioselective hydrogenation. J. Catal. 213, 296 (2003).CrossRefGoogle Scholar
4Strobel, R., Krumeich, F., Stark, W.J., Pratsinis, S.E. and Baiker, A.: Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation. J. Catal. 222, 307 (2004).CrossRefGoogle Scholar
5Mädler, L., Stark, W.J. and Pratsinis, S.E.: Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2. J. Mater. Res. 18, 115 (2003).CrossRefGoogle Scholar
6Johannessen, T. and Koutsopoulos, S.: One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation—A possible alternative to traditional methods for parallel screening. J. Catal. 205, 404 (2002).CrossRefGoogle Scholar
7Backman, U., Tapper, U. and Jokiniemi, J.K.: An aerosol method to synthesize supported metal catalyst nanoparticles. Synth. Metals 142, 169 (2004).CrossRefGoogle Scholar
8Mueller, R., Kammler, H.K., Pratsinis, S.E., Vital, A., Beaucage, G. and Burtscher, P.: Non-agglomerated dry silica nanoparticles. Powder Technol. 140, 40 (2004).CrossRefGoogle Scholar
9Pratsinis, S.E., Zhu, W.H. and Vemury, S.: The role of gas mixing in flame synthesis of titania powders. Powder Technol. 86, 87 (1996).CrossRefGoogle Scholar
10Kammler, H.K., Jossen, R., Morrison, P.W., Pratsinis, S.E. and Beaucage, G.: The effect of external electric fields during flame synthesis of titania. Powder Technol. 135, 310 (2003).CrossRefGoogle Scholar
11Vemury, S. and Pratsinis, S.E.: Corona-assisted flame synthesis of ultrafine titania particles. Appl. Phys. Lett. 66, 3275 (1995).CrossRefGoogle Scholar
12Wegner, K. and Pratsinis, S.E.: Nozzle-quenching process for controlled flame synthesis of titania nanoparticles. AIChE J. 49, 1667 (2003).CrossRefGoogle Scholar
13Hansen, J.P., Jensen, J.R., Livbjerg, H. and Johannessen, T.: Synthesis of ZnO particles in a quench-cooled flame reactor. AIChE J. 47, 2413 (2001).CrossRefGoogle Scholar
14Johannessen, T., Jenson, J.R., Mosleh, M., Johansen, J., Quaade, U. and Livbjerg, H.: Flame synthesis of nanoparticles—Applications in catalysis and product/process engineering. Chem. Eng. Res. Des. 82, 1444 (2004).CrossRefGoogle Scholar
15Bamwenda, G.R., Tsubota, S., Nakamura, T. and Haruta, M.: Photoassisted hydrogen-production from a water-ethanol solution—A comparison of activities of Au–TiO2 and Pt–TiO2. J. Photochem. Photobio., A Chem. 89, 177 (1995).CrossRefGoogle Scholar
16Han, X.X., Zhou, R.X., Lai, G.H. and Zheng, X.M.: Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal. Today 93–95, 433 (2004).CrossRefGoogle Scholar
17Mädler, L., Kammler, H.K., Mueller, R. and Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369 (2002).CrossRefGoogle Scholar
18Jossen, R., Pratsinis, S.E., Stark, W.J. and Mädler, L.: Criteria for flame spray synthesis of hollow, shell-like or inhomogeneous oxides. J. Am. Ceram. Soc. 88, 1388 (2005).CrossRefGoogle Scholar
19Morrison, P.W., Raghavan, R., Timpone, A.J., Artelt, C.P. and Pratsinis, S.E.: In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater. 9, 2702 (1997).CrossRefGoogle Scholar
20Kammler, H.K., Pratsinis, S.E., Morrison, P.W. and Hemmerling, B.: Flame, temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combust. Flame 128, 369 (2002).CrossRefGoogle Scholar
21Howard, C.J., Sabine, T.M. and Dickson, F.: Structural and thermal parameters for rutile and anatase. Acta Crystallographica Section B Structural Science 47, 462 (1991).CrossRefGoogle Scholar
22Seki, H., Ishizawa, N., Mizutani, N. and Kato, M.: High temperature structures of the rutile-type oxides, TiO2 and SnO2. Yogyo Kyokai Shi. J. Ceramic Assoc. of Japan 92, 219 (1984).CrossRefGoogle Scholar
23Garcia-Cortes, J.M., Perez-Ramirez, J., Rouzaud, J.N., Vaccaro, A.R., Illan-Gomez, M.J. and de Lecea, C.S.M.: On the structure sensitivity of deNO(x) HC-SCR over Pt-beta catalysts. J. Catal. 218, 111 (2003).CrossRefGoogle Scholar
24Wells, P.B.: Characterization of the standard platinum silica catalyst Europt-1.5. chemisorption of carbon-monoxide and of oxygen. Appl. Catal. 18, 259 (1985).CrossRefGoogle Scholar
25Chigier, N.A. and McCreath, C.G.: Combustion of droplets in sprays. Acta Astronaut. 1, 687 (1974).CrossRefGoogle Scholar
26Oh, S.H., Kim, D.I. and Paek, M.S.: Experiments on air-assist spray and spray flames. Atom. Sprays 11, 775 (2001).Google Scholar
27Nakaso, K., Okuyama, K., Shimada, M. and Pratsinis, S.E.: Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chem. Eng. Sci. 58, 3327 (2003).CrossRefGoogle Scholar
28Chemistry, N.I.S.T., WebBook, National Institute of Standards and Technology, http://webbook.nist.gov/chemistry/ (2003).Google Scholar
29Mädler, L. and Pratsinis, S.E.: Bismuth oxide nanoparticles by flame spray pyrolysis. J. Am. Ceram. Soc. 85, 1713 (2002).CrossRefGoogle Scholar
30Keskinen, H., Makela, J.M., Vippola, M., Nurminen, M., Liimatainen, J., Lepisto, T. and Keskinen, J.: Generation of silver/palladium nanoparticles by liquid flame spray. J. Mater. Res. 19, 1544 (2004).CrossRefGoogle Scholar
31Seipenbusch, A., Weber, A.P., Schiel, A. and Kasper, G.: Influence of the gas atmosphere on restructuring and sintering kinetics of nickel and platinum aerosol nanoparticle agglomerates. J. Aerosol Sci. 34, 1699 (2003).CrossRefGoogle Scholar
32Mädler, L., Kammler, H.K., Mueller, R. and Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369 (2002).CrossRefGoogle Scholar
33Heine, M.C. and Pratsinis, S.E.: Droplet and particle dynamics during flame spray synthesis of nanoparticles. Ind. Eng. Chem. Res. 44, 6222 (2005).CrossRefGoogle Scholar
34Teoh, W.Y., Mädler, L., Beydoun, D., Pratsinis, S.E. and Amal, A.: Direct (one-step) synthesis for TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralization of sucrose. Chem. Eng. Sci. 60, 5852 (2005).CrossRefGoogle Scholar
35Grunwaldt, J.D. and Baiker, A.: Axial variation of the oxidation state of Pt–Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: An in situ X-ray absorption spectroscopy study. Catal. Lett. 99, 5 (2005).CrossRefGoogle Scholar
36Gan, S., El-Azab, A. and Liang, Y.: Formation and diffusion of Pt nanoclusters on highly corrugated anatase TiO2(001)–(1 × 4) surface. Surf. Sci. 479 L369 (2001).CrossRefGoogle Scholar
37Chen, D.A., Bartelt, M.C., Seutter, S.M. and McCarty, K.F.: Small, uniform, and thermally stable silver particles on TiOs(110)–(1 × 1). Surf. Sci. 464, L708 (2000).CrossRefGoogle Scholar
38Tauster, S.J.: Strong metal-support interactions. Acc. Chem. Res. 20, 389 (1987).CrossRefGoogle Scholar
39Mädler, L., Stark, W.J. and Pratsinis, S.E.: Flame-made ceria nanoparticles. J. Mater. Res. 17, 1356 (2002).CrossRefGoogle Scholar