Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:38:25.424Z Has data issue: false hasContentIssue false

Influence of substrate metallization on diffusion and reaction at the under-bump metallization/solder interface in flip-chip packages

Published online by Cambridge University Press:  31 January 2011

F. Zhang
Affiliation:
Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602
M. Li*
Affiliation:
Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602
C. C. Chum
Affiliation:
Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602
K. N. Tu
Affiliation:
Department of Materials Science and Engineering, University of California—Los Angeles, Los Angeles, California 90095–1595
*
a) Address all correspondence to this author. e-mail: ming-li@imre.org.sg
Get access

Abstract

In flip-chip packages, the effect of Ni metallization on the substrate side on interfacial reactions between solders and an Al/Ni(V)/Cu under-bump metallization (UBM) on the chip side was investigated during the reflow process. The Ni substrate metallization greatly accelerated interfacial reactions on the chip side and quickly degraded the thermal stability of the UBM due to a fast consumption of the Ni(V) layer. This phenomenon can be explained in terms of rapid Ni or Sn diffusion in the ternary (Cu,Ni)6Sn5 phase, which was formed in the solder adjacent to the Ni(V) layer and the enhanced dissolution of (Cu,Ni)6Sn5 into the molten solder. Without the Ni metallization on the substrate side, the Al/Ni(V)/Cu UBM remained very stable with both eutectic SnPb and Pb-free solders.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.International Technology Roadmap for Semiconductors, Semiconductor Industry Association (San Jose, CA, 1999).Google Scholar
2.Frear, D.R., Jang, J.W., Lin, L.K., and Zhang, C., JOM 53(6), 28 (2001).CrossRefGoogle Scholar
3.Gayle, F.W., Becka, G., Badgett, J., Whitten, G., Pan, T.Y., Grusd, A., Bauer, B., Lathrop, R., Slattery, J., Anderson, I., Foley, J., Gickler, A., Napp, D., Mather, J., and Olsen, C., JOM 53(6), 17 (2001).CrossRefGoogle Scholar
4.Jang, J.W., Silva, A.P. De, Lee, T.Y., Lin, J.K., and Frear, D.R., Appl. Phys. Lett. 79, 482 (2001).CrossRefGoogle Scholar
5.Kim, P.G., Tu, K.N., and Abbott, D.C., J. Appl. Phys. 84, 770 (1998).CrossRefGoogle Scholar
6.Ghosh, G., Acta Mater. 48, 3719 (2000).CrossRefGoogle Scholar
7.Ghosh, G., J. Appl. Phys. 88, 6887 (2000).CrossRefGoogle Scholar
8.Ghosh, G., Acta Mater. 49, 2609 (2001).CrossRefGoogle Scholar
9.Zhang, F., Li, M., and Chum, C.C., in Proceedings of 52nd Electronic Component & Technology Conference. (IEEE, Piscataway, NJ, 2002), p. 726.Google Scholar
10.Li, M., Zhang, F., Chen, W.T., Zeng, K., Tu, K.N., Balkan, H., and Ellinus, P., J. Mater. Res. 17, 1612 (2002).CrossRefGoogle Scholar
11.Zribi, A., Clark, A., Zavalij, L., Borgesen, P., and Cotts, E.J., J. Electron Mater. 30, 1157 (2001).CrossRefGoogle Scholar
12.Park, L.Y., Yang, C.W., Ha, J.S., Kim, C.U., Kwon, E.J., Jung, S.B., and Kang, C.S., J. Electron Mater. 30, 1165 (2001).CrossRefGoogle Scholar
13.Zeng, K., Vuorinen, V., and Kivilahti, J.K., in Proceedings of 51st Electronic Component & Technology Conference (IEEE, Piscataway, NJ, 2001), p. 693.Google Scholar
14.Chen, W.T., Ho, C.E., and Kao, C.R., J. Mater. Res. 17, 263 (2002).CrossRefGoogle Scholar
15.Liu, C.Y., Tu, K.N., Sheng, T.T., Tung, C.H., Frear, D.R., and Ellenius, P., J. Appl. Phys. 87, 750 (2000).CrossRefGoogle Scholar
16.Zhang, F., Li, M., Bavani, B., and Chen, W.T., J. Electron Mater. (in press).Google Scholar