Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T15:49:08.341Z Has data issue: false hasContentIssue false

Influence of Ta content on the physical properties of SrBi2Ta2O9 ferroelectric thin films

Published online by Cambridge University Press:  03 March 2011

Fan-Yi Hsu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
Ching-Chich Leu
Affiliation:
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, Republic of China
Chao-Hsin Chien
Affiliation:
Department of Electronics Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China
Chen-Ti Hu*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: cthu@mx.nthu.edu.tw
Get access

Abstract

We have investigated the effect that the Ta content has on the ferroelectric properties of strontium bismuth tantalate (SBT) thin films synthesized using metalorganic decomposition (MOD) and spin coating techniques. The physical properties of these SBT samples were strongly dependent upon the Ta ratio. Polarization measurements revealed that Ta-deficient SBT exhibited a relatively low coercive field (2Ec ∼ 87 kV/cm) and a high remanent polarization (2Pr ∼ 15 μC/cm2). The value of 2Pr decreased as the Ta ratio in SBT increased. The improved ferroelectric properties of the Ta-deficient SBT samples may have resulted from the uniformly well-grown bismuth-layered-structured (BLS) phases of the films and their highly preferential orientation along the a and b axes. We suggest that the incorporation of Ta vacancies plays an important role in enhancing the crystallinities and microstructures of Ta-deficient SBT films.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).CrossRefGoogle Scholar
2.Li, A.D., Wu, D., Ling, H.Q., Yu, T., Wang, M., Yin, X.B., Liu, Z.G., Ming, N.B.: Effects of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition. J. Appl. Phys. 88, 1035 (2000).CrossRefGoogle Scholar
3.Dat, R., Lee, J.K., Auciello, O., Kingon, A.I.: Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue. Appl. Phys. Lett. 67, 572 (1995).Google Scholar
4.Seony, N.J., Yang, C.H., Shin, W.C., Yoon, S.G.: Oxide interfacial phases and the electrical properties of SrBi2Ta2O9 thin films prepared by plasma-enhanced metalorganic chemical vapor deposition. Appl. Phys. Lett. 72, 1374 (1998).Google Scholar
5.Vest, R.W.: Metallo-organic decomposition (MOD) processing of ferroelectric and electrooptic films: A review. Ferroelectrics 102, 53 (1990).Google Scholar
6.Franke, K., Matin, G., Weihnacht, M., Sotnikov, A.V.: SrBi2Ta2O9 has only two polar axes—A problem for high density ferroelectric memory devices. Solid State Commun. 119, 117 (2001).Google Scholar
7.Derouin, T.A., Lakeman, C.D.E., Wu, X.H., Speak, J.S., Lange, F.F.: Effect of lattice mismatch on the epitaxy of sol-gel LiNbO3 thin films. J. Mater. Res. 12, 1391 (1997).CrossRefGoogle Scholar
8.Xu, Y.H., Cheng, C.H., Lou, Y.D., Mackenzie, J.D.: Epitaxial ferroelectric thin films prepared by the sol-gel technique. Ferroelectrics 195, 283 (1998).CrossRefGoogle Scholar
9.Ramesh, R., Lee, J., Sands, T., Keramidas, V.G., Auciello, O.: Oriented ferroelectric La–Sr–Co–O/Pb–La–Zr–Ti–O/La–Sr–Co–O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer. Appl. Phys. Lett. 64, 2511 (1994).CrossRefGoogle Scholar
10.Hayashi, T., Takahashi, H., Hara, T.: Chemical processing and dielectric properties of ferroelectric SrBi2Ta2O9 thin films. Jpn. J. Appl. Phys. 35, 4952 (1996).CrossRefGoogle Scholar
11.Atsuki, T., Soyama, N., Yonezawa, T., Ogi, K.: Preparation of Bi-based ferroelectric thin films by sol-gel method. Jpn. J. Appl. Phys., Part 1 34, 5096 (1995).CrossRefGoogle Scholar
12.Miura, K., Tanaka, M.: The effect of Bi ions substituting at the Sr site in SrBi2Ta2O9. Jpn. J. Appl. Phys., Part 1 37, 2554 (1998).Google Scholar
13.Noguchi, T., Hase, T., Miyasaka, Y.: Analysis of the dependence of ferroelectric properties of strontium bismuth tantalate (SBT) thin films on the composition and process temperature. Jpn. J. Appl. Phys., Part 1 35, 4900 (1996).CrossRefGoogle Scholar
14.Shimakawa, Y., Kubo, Y., Nakagowa, Y., Kamiyama, T., Asano, H., Izumi, F.: Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl. Phys. Lett. 74, 1904 (1999).Google Scholar
15.Chen, S-Y., Lee, V-C.: Effect of lead additive on the ferroelectric properties and microstructure of SrxPby Bi2zTa2O9 thin films. J. Appl. Phys. 87, 8024 (2000).Google Scholar
16.Hase, T., Noguchi, T., Amanuma, K., Miyasaka, Y.: Sr content dependence of ferroelectric properties in SrBi2Ta2O9 thin films. Integr. Ferroelectr. 15, 127 (1997).CrossRefGoogle Scholar
17.Leu, C.C., Chien, C.H., Hsu, F.Y., Lin, H-T., Hu, C.T.: Influence of ultrathin tantalum buffer layers on microstructure and ferroelectric properties of SrBi2Ta2O9 thin films. J. Electrochem. Soc. 151 F167 (2004).CrossRefGoogle Scholar
18.Ren, S.B., Lu, C.J., Shen, H.M., Wang, Y.N.: Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film. Phys. Rev. B. 54 R14337 (1996).CrossRefGoogle Scholar
19.Ren, S.B., Lu, C.J., Shen, H.M., Wang, Y.N.: In situ study of the evolution of domain structure in free-standing polycrystalline PbTiO3 thin films under external stress. Phys. Rev. B. 55, 3485 (1997).CrossRefGoogle Scholar
20.Kwak, W.C., Sung, Y-M.: Crystallization kinetics of sol-gel-derived (1−x)SrBi2Ta2O9xBi3TiTaO9 ferroelectric thin films. J. Mater. Res. 17, 1463 (2002).Google Scholar
21.Bhattacharyya, S., Laha, A., Krupanidhi, S.B.: Impact of Sr content on dielectric and electrical properties of pulsed laser ablated SrBi2Ta2O9 thin films. J. Appl. Phys. 92, 1056 (2002).CrossRefGoogle Scholar
22.Palanduz, C.M., Smyth, D.M.: The effect of cation place exchange on the electrical conductivity of SrBi2M2O9 (M = Ta, Nb). J. Eur. Ceram. Soc. 19, 731 (1999).Google Scholar
23.Shin, W.C., Yoon, S.G.: Improvement in ferroelectric properties of SrBi2Ta2O9 thin films with Bi2O3 buffer layers by liquid-delivery metalorganic chemical-vapor deposition. Appl. Phys. Lett. 79, 1519 (2001).CrossRefGoogle Scholar
24.Chen, S.Y., Lan, B.C., Taso, C.S.: Film structure and ferroelectric properties of vanadium-doped Sr0.8Bi2.3Ta2O9 thin films. J. Appl. Phys. 91, 10032 (2002).CrossRefGoogle Scholar
25.Kim, S.H., Kim, D.J., Maria, J.P., Kingon, A.I., Streiffer, S.K., Im, J., Auciello, O., Krauss, A.R.: Influence of Pt heterostructure bottom electrodes on SrBi2Ta2O9 thin film properties. Appl. Phys. Lett. 76, 496 (2000).CrossRefGoogle Scholar
26.Bungener, R., Pamler, W., Gosele, U.: Diffusion of Sr, Bi, and Ta in amorphous SiO2. Mater. Sci. Semicond. Process. 6, 43 (2003).Google Scholar
27.Tan, Q., Li, J., Viehland, D.: Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Appl. Phys. Lett. 75, 418 (1999).CrossRefGoogle Scholar
28.Viehland, D., Chen, Y.H.: Random-field model for ferroelectric domain dynamics and polarization reversal. J. Appl. Phys. 88, 6696 (2000).CrossRefGoogle Scholar
29.Park, B.H., Hyun, S.J., Bu, S.D., Noh, T.W., Lee, J., Kim, H-D., Kim, T.H., Jo, W.: Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907 (1999).CrossRefGoogle Scholar
30.Shirley, D.A.: High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).Google Scholar
31.Thomas, J.H. IIIHammer, L.H.: A photoelectron spectroscopy study of carbon tetrafluoride/hydrogen reactive ion etching residue on tantalum disilicide. J. Electrochem. Soc. 136, 2004 (1989).CrossRefGoogle Scholar
32.Hofman, S., Sanz, J.M.: Quantitative XPS analysis of the surface layer of anodic oxides obtained during depth profiling by sputtering with 3 keV Ar+ ions. J. Trace Microprobe Technol. 1, 213 (1982).Google Scholar
33.Yuan, G.L., Liu, J-M., Wang, Y.P., Wu, D., Zhang, S.T., Shao, Q.Y., Liu, Z.G.: Fatigue study of metalorganic-decomposition-derived SrBi2Ta2O9 thin films: The effect of partial switching. Appl. Phys. Lett. 76, 2208 (2000).Google Scholar
34.Wu, D., Li, A., Ling, H., Yu, T., Liu, Z., Ming, N.: Temperature-dependent fatigue behaviors of ferroelectric ABO3-type and layered perovskite oxide thin films. Appl. Phys. Lett. 84, 3352 (2004).Google Scholar
35.Robertson, J., Chen, C.W., Warren, W.L., Gutleben, C.D.: Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9. Appl. Phys. Lett. 69, 1704 (1996).Google Scholar