Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-30T19:26:31.374Z Has data issue: false hasContentIssue false

Investigation of mechanical alloying of Ti–Al compounds using perturbed γγ-angular correlation spectroscopy, x-ray diffraction, and differential scanning calorimetry

Published online by Cambridge University Press:  31 January 2011

St. Lauer
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany
Z. Guan
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany
H. Wolf
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany
Th. Wichert
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany
Get access

Abstract

Ti0.50Al0.50 and Ti0.75Al0.25 compounds were mechanically alloyed by ball milling of elemental Ti and Al powders. Radioactive 111In atoms incorporated into these compounds were used to investigate the different locally ordered crystalline structures by perturbed γγ-angular correlation spectroscopy (PAC). The formation of the intermetallic compounds γ–TiAl and α2–Ti3Al was observed on an atomic scale and occurred as a consequence of the heat treatment of mechanically alloyed Ti0.50Al0.50 and Ti0.75Al0.25, respectively. Due to the sensitivity of PAC to local order on an atomic scale, information about formation conditions and thermal stability of a new metastable phase with an ordered tetragonal crystal structure is presented for Ti0.50Al0.50 samples. In addition, the formation of the ordered phase Ti2AlN was observed, indicating the incorporation of N during the milling process. The PAC investigations were complemented by x-ray diffraction and differential scanning calorimetry measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lipsitt, H.A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S., (Mat. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.Google Scholar
2.Mabuchi, H., Tsuda, H., Nakayama, Y., and Sukedai, E., J. Mater. Res. 7, 894 (1992).CrossRefGoogle Scholar
3.Koch, C.C., Mater. Sci. Forum 88–90, 243 (1992).CrossRefGoogle Scholar
4.Schelleng, R.D., J. Metals 41(1), 32 (1989).Google Scholar
5.Wang, K.Y., Wang, J.G., and Chen, G.L., J. Mater. Res. 10, 1247 (1995).CrossRefGoogle Scholar
6.Suzuki, T., Ino, T., and Nagumo, M., Mater. Sci. Forum 88–90, 639 (1992).CrossRefGoogle Scholar
7.Hyperfine Interactions in Nanocrystalline Materials edited by Collins, G.S. (Hyp. Int. 130, Dordrecht, The Netherlands, 2000).Google Scholar
8.Lauer, St., Guan, Z., Wolf, H., and Wichert, Th., Mater. Sci. Forum 269–272, 485 (1998).CrossRefGoogle Scholar
9.Schatz, G., Weidinger, A., Nuclear Condensed Matter Physics(Wiley, Chichester, England, 1995), p. 63.Google Scholar
10.Wichert, Th. and Recknagel, E., in Microscopic Methods in Metals, edited by Gonser, U. (Topics in Current Physics 40, Berlin, Germany, 1986), p. 317.CrossRefGoogle Scholar
11.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
12.Oehring, M., Klassen, T., and Bormann, R., J. Mater. Res. 8, 2819 (1993).CrossRefGoogle Scholar
13.Walkowiak, G., Sell, T., and Mehrer, H., Z. Metallkd. 85, 332 (1994).Google Scholar
14.Fan, J. and Collins, G.S., Hyp. Int. 79, 745 (1993).CrossRefGoogle Scholar
15.St. Lauer, Wolf, H., Ehrhardt, H., Zimmer, H.G., and Wichert, Th., Hyp. Int. C1, 262 (1996).Google Scholar
16.Kaufmann, E.N., Raghavan, P., Raghavan, R.S., Krien, K., and Naumann, R.A., Phys. Status Sol. 63, 719 (1974).CrossRefGoogle Scholar
17.Foettinger, H., Forkel, D., Plank, H., and Witthuhn, W., Hyp. Int. 35, 765 (1987).CrossRefGoogle Scholar
18.Collins, G.S., (private communication).Google Scholar
19.Itsukaichi, T., Masuyama, K., Umemoto, M., Okane, I., and Cabañas-Moreno, J.G., J. Mater. Res. 8, 1817 (1993).CrossRefGoogle Scholar
20.Park, Y.H., Hashimoto, H., and Watanabe, R., Mater. Sci. Forum 88–90, 59 (1992).CrossRefGoogle Scholar
21.Suryanarayana, C., Intermetallics 3, 153 (1995).CrossRefGoogle Scholar
22.Guo, W., Martelli, S., Padella, F., Magini, M., Burgio, N., Paradiso, E., and Franzoni, U., Mater. Sci. Forum 88–90, 139 (1992).CrossRefGoogle Scholar
23.Klassen, T., Oehring, M., and Bormann, R., J. Mater. Res. 9, 47 (1994).CrossRefGoogle Scholar
24.Chen, Y., Calka, A., Williams, J.S., and Ninham, B.W., Mater. Sci. Eng. A187, 51 (1994).CrossRefGoogle Scholar
25.Senkov, O.N., Srisukhumbowornchai, N., Övecoglu, M.L., and Froes, F.H., J. Mater. Res. 13, 3399 (1998).CrossRefGoogle Scholar
26.Wolf, H., Guan, Z., Li, X., and Wichert, Th., Hyp. Int. (2002, in press).Google Scholar