Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-13T10:07:10.639Z Has data issue: false hasContentIssue false

Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC

Published online by Cambridge University Press:  31 January 2011

Won-Seon Seo
Affiliation:
Department of Applied Chemistry, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-01, Japan
Kunihito Koumoto
Affiliation:
Department of Applied Chemistry, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-01, Japan
Get access

Abstract

Beta–SiC specimens possessing 15% stacking fault density were annealed at various temperatures for various time periods under an Ar or a N2 atmosphere, and the mechanisms of stacking fault annihilation and grain growth were investigated. The values of the geometric factor in the Avrami–Erofeev equation indicated that the rate of stacking fault annihilation is controlled by the atomic diffusion process. On the other hand, the rate of grain growth was found to be limited by surface diffusivity. Coincidence in the values of activation energy for stacking fault annihilation and grain growth within experimental errors firmly suggested that the annihilation of stacking faults is an apparent phenomenon resulting from the microstructural development in which the grain growth is controlled by surface diffusivity. Incorporation of nitrogen during heating suppressed the surface diffusivity and, hence, the rate of stacking fault annihilation.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koumoto, K.Shimohigoshi, M.Takeda, S. and Yanagida, H.Ceram. Trans. 2, 501510 (1989).Google Scholar
2Sasaki, G.Hiraga, K.Hirabayashi, M.Niihara, K., and Hirai, T.Yogyo-Kyokai-Shi 94, 779783 (1986).CrossRefGoogle Scholar
3Ogbuji, L. U.Mitchell, T. E. and Heuer, A. H.J. Am. Ceram. Soc. 64, 9199 (1981).CrossRefGoogle Scholar
4Seo, W. S.Pai, C. H.Koumoto, K. and Yanagida, H.J. Ceram. Soc. Jpn. 100, 227232 (1992).CrossRefGoogle Scholar
5Heuer, A.H.Fryburg, G.A.Ogbuji, L.U.Mitchell, T.E. and Shinozaki, S.J. Am. Ceram. Soc. 61, 406412 (1978).CrossRefGoogle Scholar
6Ogbuji, L. U.Mitchell, T. E. and Heuer, A. H.J. Am. Ceram. Soc. 64, 9199 (1981).CrossRefGoogle Scholar
7Ogbuji, L.U.Mitchell, T.E.Heuer, A.H. and Shinozaki, S.J. Am. Ceram. Soc. 64, 100105 (1981).CrossRefGoogle Scholar
8Jepps, N.W. and Page, T.F.J. Microsc. 116, 159171 (1979).CrossRefGoogle Scholar
9Seo, W.S.Pai, C.H.Koumoto, K. and Yanagida, H.J. Ceram. Soc. Jpn. 99, 443447 (1991).CrossRefGoogle Scholar
10Seo, W. S.Pai, C. H.Koumoto, K. and Yanagida, H.J. Ceram. Soc. Jpn. 99, 11791184 (1991).CrossRefGoogle Scholar
11Jeffries, Z.Chem. Metall. Eng. 18, 185 (1918).Google Scholar
12Johnson, W.A. and Mehl, R.F.Trans. AIME 135, 416442 (1939).Google Scholar
13Avrami, M.J. Chem. Phys. 7, 11031112 (1939).CrossRefGoogle Scholar
14Erofeev, B.V.C.R. (Dokl.) Acad. Sci. l'URSS 52, 511514 (1946).Google Scholar
15Hancock, J.D. and Sharp, J.H.J. Am. Ceram. Soc. 55, 7477 (1972).CrossRefGoogle Scholar
16Kingery, W. D.Bowen, H. K. and Uhlmann, D. R.Introduction of Ceramics (John Wiley and Sons, New York, 1976), pp. 448468.Google Scholar
17Nichols, F.A. and Mullins, W.W.J. Appl. Phys. 36, 18261835 (1965).CrossRefGoogle Scholar
18Herring, C.J. Appl. Phys. 21, 301303 (1950).CrossRefGoogle Scholar
19Hase, T.Suzuki, H. and Tomizuka, I.Yogyo-Kyokai-Shi 87, 317321 (1979).CrossRefGoogle Scholar
20Greskovich, C. and Rosolowski, J. H.J. Am. Ceram. Soc. 59, 336343 (1976).CrossRefGoogle Scholar
21Hon, M.H. and Davis, R.F.J. Mater. Sci. 14, 24112421 (1979).CrossRefGoogle Scholar
22Hon, M.H. and Davis, R.F.J. Mater. Sci. 15, 20732080 (1980).CrossRefGoogle Scholar
23Hong, J.D. and Davis, R.F.J. Am. Ceram. Soc. 63, 546552 (1980).CrossRefGoogle Scholar
24Hong, J.D. and Davis, R.F.J. Mater. Sci. 16, 24852494 (1981).CrossRefGoogle Scholar
25Grathwohl, G.Reets, T. H. and Thummler, F.Sci. Ceram. 11, 425431 (1981).Google Scholar
26Nixon, R.D. and Davis, R.F.J. Am. Ceram. Soc. 75, 17861795 (1992).CrossRefGoogle Scholar
27Whitney, E.D.Nature 199, 278280 (1963).CrossRefGoogle Scholar
28Hase, T. and Suzuki, H.Yogyo-Kyokai-Shi 88, 258264 (1980).CrossRefGoogle Scholar