Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T05:26:38.134Z Has data issue: false hasContentIssue false

Lattice distortion effects on electrical switching in epitaxial thin film NdNiO3

Published online by Cambridge University Press:  03 March 2011

J.F. DeNatale
Affiliation:
Rockwell Science Center, Thousand Oaks, California 91360
P.H. Kobrin
Affiliation:
Rockwell Science Center, Thousand Oaks, California 91360
Get access

Abstract

Crystalline thin films of NdNiO3 have been epitaxially grown on the (100) face of single-crystal LaAlO3 substrates. These films exhibit the characteristic reversible change in electrical conductivity with temperature previously observed in bulk polycrystalline material. The temperature of the electrical transition in the epitaxial thin films was lower than reported for the bulk polycrystalline ceramics. This effect is attributed to lattice strains associated with the film processing and interfacial lattice matching constraints.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Torrance, J.B., Lacorre, P., Nazzal, A.I., Ansaldo, E.J., and Niedermayer, Ch., Phys. Rev. B 45 (14), 8209 (1992).CrossRefGoogle Scholar
2Canfield, P.C., Thompson, J.D., Cheong, S.W., and Rupp, L.W., Phys. Rev. B 47 (18), 12357 (1993).Google Scholar
3Lacorre, P., Torrance, J.B., Pannetier, J., Nazzal, A.I., Wang, P., and Huang, T.C., J. Solid State Chem. 91, 225 (1991).CrossRefGoogle Scholar
4Granados, X., Fontcuberta, J., Obradors, X., Manosa, Ll., and Torrance, J.B., Phys. Rev. B 48 (16), 11666 (1993).Google Scholar
5Garcia-Munoz, J.L., Rodriguez-Carvajal, J., and Lacorre, P., Phys. Rev. B 50 (2), 978 (1994).CrossRefGoogle Scholar
6Garcia-Munoz, J.L., Rodriguez-Carvajal, J., Lacorre, P., and Torrance, J.B., Phys. Rev. B 46 (8), 4414 (1992).Google Scholar
7Garcia-Munoz, J.L., Rodriguez-Carvajal, J., and Lacorre, P., Physica B 180/181, 306 (1992).Google Scholar
8Zaanen, J., Sawatzky, G.A., and Allen, J.W., Phys. Rev. Lett. 55 (4), 418 (1985).Google Scholar
9Zaanen, J. and Sawatzky, G.A., J. Solid State Chem. 88, 8 (1990).Google Scholar
10Torrance, J.B., Lacorre, P., Asavaroengchai, C., and Metzger, R.M., Physica C 182, 351 (1991).Google Scholar
11Blasco, J. and Garcia, J., Solid State Ionics 63–65, 593 (1993).Google Scholar
12Garcia, J., Beltran, D., Sapina, F., and Sanchis, M.J., J. Alloys and Compounds 188, 170 (1992).Google Scholar
13Garcia, J., Gonzalez, A., Sanchis, M.J., Marcos, M.D., Martinez, E., Sapina, F., Beltran, D., and Beltran, A., Solid State Ionics 63–65, 52 (1993).Google Scholar
14Blasco, J. and Garcia, J., Solid State Commun. 91 (5), 381 (1994).Google Scholar
15Vassilious, J.K., Hornbostel, M., Ziebarth, R., and Disalvo, F.J., J. Solid State Chem. 81, 208 (1989).CrossRefGoogle Scholar
16Zarwasch, R., Ofner, H., Rille, E., and Pulker, H.K., SPIE Vol. 1324, Modeling of Optical Thin Films II, edited by Jacobson, M.R. (1990), p. 172.Google Scholar
17Geller, S. and Bala, V.B., Acta Crystallogr. 9, 1019 (1956).Google Scholar
18Beesabathina, D.P., Salamanca-Riba, L., Mao, S.N., Xi, XX., Venkatesan, T., and Wu, X.D., J.Mater. Res. 9, 1376 (1994).Google Scholar